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Abstract—Scientific applications modeled as workflows can 

exhibit both task and data parallelism. Scheduling these 

workflows in a multi-cluster environment is challenging due to 

the large number of task mapping possibilities. Therefore, several 

heuristics have been proposed over the last years to address such 

a problem. A key limitation of existing heuristics for multi-cluster 

environments is that individual tasks are mapped onto single 

resources, which limits the resource options to reduce the time to 

the complete workflow executions. This paper introduces the 

Multi-Cluster Allocation-Heterogeneous Earliest Finish Time 

(MCA-HEFT) heuristic, which deploys single parallel tasks of a 

workflow into multiple clusters and schedules them accordingly. 

We evaluated MCA-HEFT against the Mixed-parallel 

Heterogeneous Earliest Finish Time (M-HEFT) heuristic, which 

is one of the most well-known workflow scheduling heuristics in 

literature. MCA-HEFT was able to produce makespans that were 

up to 42% shorter than those produced by M-HEFT, having only 

approximately 10% of tasks distributed on multiple clusters. Our 

experiments considered several metrics and parameters including 

critical path size, makespan, number of clusters used to execute 

tasks, and the network impact when deploying the tasks in 

multiple clusters. 

Keywords–Workflow scheduling; resource co-allocation; multi-

cluster executions; HEFT; M-HEFT; Mixed parallel applications. 

 

I. INTRODUCTION 

 
Distributed infra-structures such as grids and clouds have 

been developed in order to enable the execution of scientific 
applications across multiple sites [1]. Over the last years, grid 
computing infra-structure composed of multiple clusters have 
been recognized as an infra-structure for efficient execution of 
parallel tasks based on the message passing paradigm.  

Scientific applications are composed of parallel and 
sequential tasks which can be computationally intensive. Such 
applications can be organized as workflows in order to be 
scheduled, executed, and managed in a distributed infra-
structure such as multi-clusters. In this sense, the task 
parallelism and data parallelism [2], [3] can be explored to 
improve the application’s performance. The task parallelism is 
present at level of tasks of a workflow, and the data parallelism 
can be present in a single task of a workflow. 

The scheduling of workflows is essential for an efficient 
execution of scientific applications. Such scheduling poses two 
challenges: the heterogeneous nature of resources and the task 
malleability [4], which imply that tasks can be executed on any 
number of resources with different execution time. Therefore, a 
number of heuristics have been developed [5] for scheduling 
workflows on heterogeneous infra-structures, most part of such 
heuristics is based on Heterogeneous Earliest Finish Time 
(HEFT) [6] which is one of the most popular and efficient 
heuristics. 

One key aspect of scheduling workflows containing parallel 
tasks is deciding whether a single or multiple clusters should be 
used for their execution. This aspect has been investigated over 
the last years, in the context of two research areas namely 
resource co-allocation and workflow scheduling. Resource co-
allocation [7] investigates the use of multiple clusters to 
execute a single parallel task. Research in this area has not 
considered such parallel tasks as part of a workflow containing 
task dependencies. For workflow scheduling, existing solutions 
restrict the execution of parallel tasks to a single cluster [8] [3]. 
This is due to the support of high interconnection speed, high 
bandwidth and low latency networks such as Infiniband [9], 
and the support of Network File System (NFS) which provides 
easy and transparent access to data from any of the parallel 
process.  

The goal of this work is to leverage existing knowledge on 
resource co-allocation and workflow scheduling in order to 
allow the scheduling of workflow parallel tasks into multiple 
clusters. This brings the advantage of enabling the access to 
more resources, thus reducing overall user response time, even 
considering the low network communication performance 
across multiple clusters. Therefore, the contributions of this 
work are: 

 A workflow scheduling heuristic, named Multi-
Cluster Allocation-HEFT (MCA-HEFT), that 
considers the execution of single parallel tasks into 
multiple clusters. 

 A detailed analysis on the impact of utilizing 
multiple clusters for the execution of single 
parallel tasks inside workflows, considering the 
number of tasks per workload level, critical path, 
and the inter-cluster network overhead. 



II. PROBLEM DESCRIPTION AND DEFINITIONS 

 
This section presents a definition of the multi-cluster 

computing environment, the workflow application model, and 
the problem our proposed workflow scheduling heuristic 
tackles. 

 

A. Computational Environment and Application Model 

 
The computational environment considered here is a multi-

cluster grid environment. Each cluster is composed of a set of 
identical nodes managed by a batch scheduler. Such clusters 
can be deployed in the same administrative domain, or can be 
deployed in geographically dispersed administrative domains 
using a wide-area network.  

The workflow applications we considered in this paper are 
modeled as a Direct Acyclic Graph (DAG), which is specified 
as , where  is the set of 

vertices representing the graph tasks, and 

is the set of edges representing the 
precedence constraints among tasks. 

The tasks can be either sequential or parallel, and the 
parallel tasks can be either rigid or malleable. The sequential 
tasks require one resource, rigid tasks require a fixed number of 
resources, and malleable tasks can be executed with any 
number of resources, which are reserved to the task until its 
completion [4].  

Each task is defined by the following 
values , where,  
is the task computational size in instructions,  is the 
amount of data to be transferred along with the execution of 
task in Mega Bytes (MBs),  represents the 
minimum number of cores required to execute the task ,  is 
the parallel fraction of task , and the value is used to 
identify the task  as sequential, rigid or malleable,

indicates sequential task, indicates 
rigid task, and indicates malleable task. 

The parallel tasks are composed of a percentage of 
sequential code and a percentage of parallelized code. 
The is the parallel portion of code. The execution time of 

varies according to the set of resources used.  

 

Figure 1. Scheduling Problem. 

B. Problem Statement 

 

The problem tackled by the proposed heuristic is the 

scheduling of workflows in multi-cluster environments with 

the objective of minimizing makespan. We consider the 

possibility of mapping single parallel tasks to multiple clusters 

as illustrated in Figure 1. We optimize makespan as it is the 

most popular workflow scheduling optimization metric, which 

is defined as the time between the submission and the 

completion of the workflow. 

III. MCA-HEFT SCHEDULING HEURISTIC 

 
The objective of Multi-Cluster Allocation-HEFT (MCA-

HEFT) is to schedule workflows in multi-cluster environments. 
MCA-HEFT is based on the HEFT list scheduling heuristic [6], 
which has two phases, namely the task prioritization and 
processor selection. 

The priority function in HEFT defines the order in which 
the task will be scheduled. Such order is based on the upward 
rank, which is the critical path from a given task to the exit 
task. In the processor selection phase, HEFT maps each task to 
the resource that presents the lower Estimated Finish Time 
(EFT). The priority function in MCA-HEFT is also based on 
the upward rank, but the processor selection phase maps tasks 
to a set of resources with the lowest EFT. 

We present the MCA-HEFT heuristic by describing its 
major components: the rank definition and the processor 
selection.  

 

A. Rank Definition 

 
The rank of a task  is based on its computational weight, 

which is defined as the sum of the task’s computational and 
communication cost , with the and 

 of successive tasks with the highest rank until the last 
task of the workflow, according to Equation (1).  

.   (1)  

 

Where,  represents the successive tasks of task  to 
the last task of the workflow. 

 

B. Processor Selection 

 

The processor selection is performed in three steps: cluster 
allocation, resource allocation, and task mapping. 

 

1) Cluster Allocation 

 
In the cluster allocation step the MCA-HEFT heuristic 

defines whether a given task can be scheduled to multiple 
clusters or to a single one, based on a metric called , 



which is defined with basis on the Computation to 
Communication Ratio (CCR) and parallel fraction . The 
CCR is an estimate of the amount of computation performed 
along with communication, and the  is used to estimate the 
CCR of the parallel portion of parallel task only. 
The of a task is defined according to Equation (2): 

.              (2) 

 

The threshold variable named MCA is based on 
the of a task. If the  of a task is lower than 
MCA the task is executed in one cluster, if the task is greater 
than MCA the task can be executed in multiple clusters. MCA 
is defined empirically based on the network infra-structure.  

 

2) Resource Allocation 

 
In the resource allocation phase a certain amount of 

resources is allocated to task . For each task, the allocation is 
performed as follows: first, resources are allocated 
to the task, and then new resources are allocated to the task 
according to threshold variables MCAMAX and MCAIMP.  

The MCAMAX variable defines the maximum amount of 
resources that can be allocated to a single task. The resources 
considered are the total number of nodes in all the clusters. 

The allocation process begins allocating to each 
task. Then, for each level, the total number of resources is 
divided among the tasks. Each task receives a number of 
resources proportional to the rank value according to Equation 
(3) where represents the total number of 
resources of cluster . However, of a task has to be 
lower than the MCAMAX. 

 

.               (3) 

 

The MCAIMP threshold variable is a percentage which is 
used to define that in order to allocate a new resource to the 
task, the computational cost must be decreased by at least 
MCAIMP percentage. The computational cost of a task is 
defined in Equation (4) in terms of amount of instructions, and 
the execution time is defined in Equation (5) in seconds 
according to the estimated amount of instructions. 

 

.         (4) 

 

.                           (5) 

 

The  is the computational power of the cluster  
in MIPS and is calculated according to Equation (6), where 

 is computational power of resource . 

.    (6) 

 

The computational power considered is the 
lowest computational power among all clusters. The allocation 
of nodes is increased by one if  is lower 
than by at least MCAIMP percentage. 

 

3) Task Mapping 

 
The mapping is performed following the rank order. The 

tasks are mapped to the cluster which has an amount of free 
resources that is greater than or equal to the amount of 
resources allocated to the task. The clusters are verified in 
decreasing load order. The cluster load is defined by Equation 
(7), where, is the amount of resources of cluster  
which has already been allocated.  

 .                          (7) 

 

In case no cluster has more free resources than the ones 
allocated to the task, MCA-HEFT can change the amount of 
resources allocated to the task or map the task to multiple 
clusters. If the MCACCR of a task is greater than MCA the 
task is mapped to multiple clusters, otherwise MCA-HEFT 
allocates the task to the least loaded cluster. After the task is 
mapped to the cluster the least loaded resources in the cluster 
are chosen. 

IV. EVALUATION 

 

We evaluate MCA-HEFT by comparing its produced 
makespans against the ones produced by M-HEFT. We chose 
M-HEFT because it is an efficient heuristic for scheduling 
workflows and is based on HEFT. To perform the experiments, 
we developed a simulator based on SimGrid toolkit version 
3.6.2 [10] using its MSG framework. We used simulations, as 
they are a mean to study the scheduling heuristics in a 
repetitive and controllable environment. 

 

A. Experiment Setup 

 
We modeled the multi-cluster environment called 

Distributed ASCI Supercomputer 3 DAS-3
1
, located in the 

Netherlands. Such environment is composed of 277 processors 
located in 5 clusters the number of processors varies from 30 to 
90 and the average processor speed is 2.4 GHz. The 
interconnection speed between nodes in the same cluster is an 
average of 1 GB/s and the interconnection speed between 
nodes of different clusters is an average of 100 MB/s. 

                                                           
1
 DAS-3 website: http://www.cs.vu.nl/das3/index.shtml 



Table 1. Evaluation Workload. 

Tasks Levels MCACCR > MCA (%) Critical Path Size 

Few-tasks-by-level 

21 

29 
37 

46 

55 

3 

4 
5 

6 

7 

33 

34 
38 

41 

33 

290 

383 
482 

573 

666 

Various-tasks-by-level 

55 

89 
93 

113 

117 

6 

8 
9 

10 

11 

33 

43 
31 

45 

44 

574 

760 
874 

957 

1053 

Many-tasks-by-level 

39 

56 
56 

92 

133 

2 

3 
3 

4 

7 

31 

30 
36 

40 

37 

189 

290 
294 

385 

676 

    

 

We modeled a set of workflows using a script that follows 

the approach of automatic DAG generators [2]. The workflow 

generation is defined by the following parameters: number of 

levels, minimum and maximum number of tasks per level. 

Based on the following parameters the generator defines 

values for computational cost, communication cost, and 

parallel fraction of each parallel task of the workflow. The 

workflows’ characteristics that we used for the evaluation are 

presented in the three sets of Table 1.We evaluated the 

allocation process and the performance efficiency of MCA-

HEFT over a variety of scenarios using such workflows. 
In the three sets an average of 37% of tasks can potentially 

be scheduled in multiple clusters. The workflow tasks in the 
Few-tasks-by-level set have a high probability of being 
executed in multiple clusters, because few tasks can have large 
allocations. The workflow tasks in the Various-tasks-by-level 
set have lower probability of being executed in multiple 
clusters, because the workflows have more tasks by level than 
the Few-tasks-by-level set. The workflow tasks in the Many-
tasks-by-level set have a very low probability of being executed 
in multiple clusters, because each level has a great number of 
tasks which will make tasks to be allocated on a few resources. 

 

B. Result Analysis 

 
Table 2 shows the number of allocated resources per 

heuristic and the percentage of tasks mapped to multiple 
clusters by using MCA-HEFT. We observe that, by comparing 
the average number of resources allocated for each workflow in 
all the sets, MCA-HEFT produces larger allocations than M-
HEFT.  

The makespan produced by the three sets are shown and 
compared with the critical path size. Figure 2 shows the 
makespan for the sets Few-tasks-by-level, Various-tasks-by-
level, and Many-tasks-by-level respectively. The results show 
that MCA-HEFT has a better performance than M-HEFT. The 
average performance improvement is 8%, 20%, and 42% for 
Few-tasks-by-level, Various-tasks-by-level, and Many-tasks-by-
level, respectively. 

 

Table 2. Resource Distribution. 

Avg. Number of 
Resources MCA-

HEFT 

Avg. Number of 
Resources M-HEFT 

Tasks Mapped to 
Multiple Clusters MCA-

HEFT (%) 

Few-tasks-by-level 

24 
26 

26 

25 
25 

13 
10 

9 

8 
7 

10 
10 

11 

13 
9 

Various-tasks-by-level 

22 
18 

21 

19 
20 

7 
5 

5 

5 
5 

7 
11 

5 

7 
9 

Many-tasks-by-level 

7 
9 

9 

8 
11 

8 
7 

7 

5 
4 

0 
2 

4 

1 
3 

    

In order to understand the performance improvement of the 

proposed heuristic, we analyze three aspects: (i) how resources 

are allocated; (ii) the impact of network infra-structure on the 

execution of workflows; and (iii) the relation between critical 

path size and performance improvement. 

Figure 2. Makespan of the Few-tasks-by-level Set, Various-tasks-by-level Set, Many-tasks-by-level Set. 



1) Resource Allocation 

 
MCA-HEFT allocates more resources to single parallel 

tasks than M-HEFT because the number of available resources 
considered by MCA-HEFT is the sum of all resources in all the 
clusters. MCA-HEFT can therefore map a single task to 
multiple clusters to guarantee that it receives the resources 
specified by the first phase of the heuristic. Such allocation 
process, combined with the prioritization of resource allocation 
to the tasks in the critical path, contributed to the performance 
improvement compared with M-HEFT scheduling the same 
workflows. 

The number of tasks scheduled in multiple clusters is 
inversely proportional to the number of tasks by level. For 
Few-tasks-by-level, an average of 11% of tasks were scheduled 
in multiple clusters, for Various-tasks-by-level, an average of 
8% of tasks were scheduled in multiple clusters, and for Many-
tasks-by-level, an average of only 2% of tasks were scheduled 
in multiple clusters. These values are encouraging as they show 
that makespans can be reduced using up to 11% of tasks on 
multiple clusters. 

 

2) Network Impact 

 

In order to evaluate the network impact we measured the 

time spent performing computation and communication for 

each workflow task. Then, we calculate the average and 

standard deviation of time spent performing communication 

operations in all workflows for the three sets, as shown in 

Table 3. 

 The average time spent performing communication is 

short in M-HEFT and long in MCA-HEFT. Such results were 

expected since a number of tasks was executed using a low 

speed communication infra-structure, also the standard 

deviation is high indicating a great difference of 

communication costs among tasks. 

Such results show that a good estimation of tasks that need 

to be mapped to multiple clusters is important to improve 

makespans. This is mainly necessary to minimize the 

execution time considering the communication overhead. 

 

3) Critical Path Size x Performance Improvement 

 
The results show a relation between makespan and critical 

path size. In Figure 2 one can notice that the longer the 
makespan the higher the performance improvement between 
makespans produced by MCA-HEFT against makespans 
produced by M-HEFT. Such relation can be explained 
considering two aspects: the MCA-HEFT scheduling process is 
performed by levels and MCA-HEFT prioritizes the scheduling 
of tasks on critical path.  

The scheduling plan of a workflow is performed by levels. 
In each level the makespans produced by MCA-HEFT may 
have a better performance or a worse performance than that 
produced by M-HEFT. The MCA-HEFT heuristic has a worse 
performance in the levels that has many tasks that has a high 
communication cost and low computational cost, due to the 
fact that MCA-HEFT does not use the network bandwidth or 
latency as scheduling parameters. 

The scheduling of workflows with few levels containing 
many tasks with high communication cost and low 
computational cost using MCA-HEFT will have a better 
performance than M-HEFT. In the case of workflows with 
many levels, when the critical path is low the MCA-HEFT 
scheduling plan of each level will probably have a worse 
performance than M-HEFT because tasks on critical path will 
have a sharply improvement on execution time, thus, the 
MCA-HEFT performance will be similar to M-HEFT. When 
the critical path is high the tasks on critical path on each level 
have the execution time heavily improved, consequently the 
scheduling plan of each level has a better performance than M-
HEFT, thus,  MCA-HEFT performance is better than M-HEFT.  

In cases where the number of tasks per level is high, MCA-
HEFT allocates a minimum number of resources to almost all 
tasks, and only the tasks on the critical path are allocated to a 
high amount of resources. All these factors make the 
performance of MCA-HEFT better than M-HEFT as seen in 
Figure 2.  

 

V. RELATED WORK 

 
The MCA-HEFT heuristic is a list scheduling heuristic 

based on HEFT [11] [6] with the objective of scheduling 
workflows with sequential and parallel tasks on multi-cluster 
environments. A number of strategies for scheduling 
workflows with sequential tasks in grid environment have been 
developed [12], some of these strategies have been extended in 
order to consider the task parallelism, such as, Parallel HEFT 
(P-HEFT) [13] and M-HEFT. 

M-HEFT [3] extends HEFT to the case of data-parallel 
tasks and a platform that consists of heterogeneous clusters. M-
HEFT considers each task as a parallel task [14]. In this sense, 
the weight of tasks is computed on all possible subset of 
resources of each cluster and the weight of data transfer 
between tasks is computed by the sum of the average network 
latency and data size divided by bandwidth of each pair of 
resources in each cluster.  

The execution of parallel tasks on multiple clusters has been 

investigated by several authors [7], [15], [16], [17], [18], [19], 

[20]. The main reasons for executing a parallel application on 

multiple clusters are: (i) applications may require certain 

computing power that is not available in a single cluster; (ii) 

users may want to reduce the response time of their 

applications by using resources from multiple clusters; or (iii) 

user can have lower response time by merging fragments of 

multiple scheduling queues. One key issue is the possible 

bottleneck of the inter-cluster network overhead. Most of the 

 MCA-HEFT M-HEFT 

 AVG SD AVG SD 

Few-tasks-by-level 770 455 0 1 

Various-tasks-by-level 14821 12401 1 4 

Many-tasks-by-level 205 440 0 1 

Table 3. Network Execution Time. 



studies considering this issue showed that 25% of the total 

application execution is a tolerable overhead value. The main 

limitation of the projects that worked with resource co-

allocation is that they considered parallel applications in an 

isolated fashion, i.e. having no influence on what needs to be 

executed before or after them, which is the case explored in 

this paper. The proposed heuristic can split tasks onto multiple 

clusters considering workflow task dependency. 

 

VI. CONCLUSION AND FURTHER WORK 

 
We introduced a heuristic called MCA-HEFT for 

scheduling workflows composed of sequential and parallel 
tasks. The key novelty of MCA-HEFT is that it explores the 
possibility of mapping parallel tasks in multiple clusters. We 
performed a detailed analysis of the benefits of MCA-HEFT 
compared to M-HEFT, which is one of the most efficient 
heuristics in the literature. 

A metric called MCACCR was created in order to define 
whether the task can have the performance improved by being 
executed in multiple clusters. Such metric takes into account 
the parallel task characteristics and the infra-structure 
characteristics. One interesting finding is that, based on our 
workloads, scheduling approximately only 10% of the tasks to 
multiple clusters, it is possible to reduce drastically the 
makespan of the workflow executions. 

As future work, we will explore data transfer between tasks 
and dynamic task mapping inside MCA-HEFT. Moreover, we 
are planning on performing experiments on a multi-cluster 
production environment. 
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