
Scheduling Workflows in

 Multi-Cluster Environments

Silvio Luiz Stanzani
1
, Líria Matsumoto Sato

1
, Marco A. S. Netto

2

1
Computer and Digital Systems Engineering (PCS)

Polytechnic School of the University of São Paulo

São Paulo – Brazil

silvio.stanzani@usp.br, liria.sato@poli.usp.br

2
IBM Research

São Paulo – Brazil

mstelmar@br.ibm.com

Abstract—Scientific applications modeled as workflows can

exhibit both task and data parallelism. Scheduling these

workflows in a multi-cluster environment is challenging due to

the large number of task mapping possibilities. Therefore, several

heuristics have been proposed over the last years to address such

a problem. A key limitation of existing heuristics for multi-cluster

environments is that individual tasks are mapped onto single

resources, which limits the resource options to reduce the time to

the complete workflow executions. This paper introduces the

Multi-Cluster Allocation-Heterogeneous Earliest Finish Time

(MCA-HEFT) heuristic, which deploys single parallel tasks of a

workflow into multiple clusters and schedules them accordingly.

We evaluated MCA-HEFT against the Mixed-parallel

Heterogeneous Earliest Finish Time (M-HEFT) heuristic, which

is one of the most well-known workflow scheduling heuristics in

literature. MCA-HEFT was able to produce makespans that were

up to 42% shorter than those produced by M-HEFT, having only

approximately 10% of tasks distributed on multiple clusters. Our

experiments considered several metrics and parameters including

critical path size, makespan, number of clusters used to execute

tasks, and the network impact when deploying the tasks in

multiple clusters.

Keywords–Workflow scheduling; resource co-allocation; multi-

cluster executions; HEFT; M-HEFT; Mixed parallel applications.

I. INTRODUCTION

Distributed infra-structures such as grids and clouds have

been developed in order to enable the execution of scientific
applications across multiple sites [1]. Over the last years, grid
computing infra-structure composed of multiple clusters have
been recognized as an infra-structure for efficient execution of
parallel tasks based on the message passing paradigm.

Scientific applications are composed of parallel and
sequential tasks which can be computationally intensive. Such
applications can be organized as workflows in order to be
scheduled, executed, and managed in a distributed infra-
structure such as multi-clusters. In this sense, the task
parallelism and data parallelism [2], [3] can be explored to
improve the application’s performance. The task parallelism is
present at level of tasks of a workflow, and the data parallelism
can be present in a single task of a workflow.

The scheduling of workflows is essential for an efficient
execution of scientific applications. Such scheduling poses two
challenges: the heterogeneous nature of resources and the task
malleability [4], which imply that tasks can be executed on any
number of resources with different execution time. Therefore, a
number of heuristics have been developed [5] for scheduling
workflows on heterogeneous infra-structures, most part of such
heuristics is based on Heterogeneous Earliest Finish Time
(HEFT) [6] which is one of the most popular and efficient
heuristics.

One key aspect of scheduling workflows containing parallel
tasks is deciding whether a single or multiple clusters should be
used for their execution. This aspect has been investigated over
the last years, in the context of two research areas namely
resource co-allocation and workflow scheduling. Resource co-
allocation [7] investigates the use of multiple clusters to
execute a single parallel task. Research in this area has not
considered such parallel tasks as part of a workflow containing
task dependencies. For workflow scheduling, existing solutions
restrict the execution of parallel tasks to a single cluster [8] [3].
This is due to the support of high interconnection speed, high
bandwidth and low latency networks such as Infiniband [9],
and the support of Network File System (NFS) which provides
easy and transparent access to data from any of the parallel
process.

The goal of this work is to leverage existing knowledge on
resource co-allocation and workflow scheduling in order to
allow the scheduling of workflow parallel tasks into multiple
clusters. This brings the advantage of enabling the access to
more resources, thus reducing overall user response time, even
considering the low network communication performance
across multiple clusters. Therefore, the contributions of this
work are:

 A workflow scheduling heuristic, named Multi-
Cluster Allocation-HEFT (MCA-HEFT), that
considers the execution of single parallel tasks into
multiple clusters.

 A detailed analysis on the impact of utilizing
multiple clusters for the execution of single
parallel tasks inside workflows, considering the
number of tasks per workload level, critical path,
and the inter-cluster network overhead.

II. PROBLEM DESCRIPTION AND DEFINITIONS

This section presents a definition of the multi-cluster

computing environment, the workflow application model, and
the problem our proposed workflow scheduling heuristic
tackles.

A. Computational Environment and Application Model

The computational environment considered here is a multi-

cluster grid environment. Each cluster is composed of a set of
identical nodes managed by a batch scheduler. Such clusters
can be deployed in the same administrative domain, or can be
deployed in geographically dispersed administrative domains
using a wide-area network.

The workflow applications we considered in this paper are
modeled as a Direct Acyclic Graph (DAG), which is specified
as , where is the set of

vertices representing the graph tasks, and

is the set of edges representing the
precedence constraints among tasks.

The tasks can be either sequential or parallel, and the
parallel tasks can be either rigid or malleable. The sequential
tasks require one resource, rigid tasks require a fixed number of
resources, and malleable tasks can be executed with any
number of resources, which are reserved to the task until its
completion [4].

Each task is defined by the following
values , where,
is the task computational size in instructions, is the
amount of data to be transferred along with the execution of
task in Mega Bytes (MBs), represents the
minimum number of cores required to execute the task , is
the parallel fraction of task , and the value is used to
identify the task as sequential, rigid or malleable,

indicates sequential task, indicates
rigid task, and indicates malleable task.

The parallel tasks are composed of a percentage of
sequential code and a percentage of parallelized code.
The is the parallel portion of code. The execution time of

varies according to the set of resources used.

Figure 1. Scheduling Problem.

B. Problem Statement

The problem tackled by the proposed heuristic is the

scheduling of workflows in multi-cluster environments with

the objective of minimizing makespan. We consider the

possibility of mapping single parallel tasks to multiple clusters

as illustrated in Figure 1. We optimize makespan as it is the

most popular workflow scheduling optimization metric, which

is defined as the time between the submission and the

completion of the workflow.

III. MCA-HEFT SCHEDULING HEURISTIC

The objective of Multi-Cluster Allocation-HEFT (MCA-

HEFT) is to schedule workflows in multi-cluster environments.
MCA-HEFT is based on the HEFT list scheduling heuristic [6],
which has two phases, namely the task prioritization and
processor selection.

The priority function in HEFT defines the order in which
the task will be scheduled. Such order is based on the upward
rank, which is the critical path from a given task to the exit
task. In the processor selection phase, HEFT maps each task to
the resource that presents the lower Estimated Finish Time
(EFT). The priority function in MCA-HEFT is also based on
the upward rank, but the processor selection phase maps tasks
to a set of resources with the lowest EFT.

We present the MCA-HEFT heuristic by describing its
major components: the rank definition and the processor
selection.

A. Rank Definition

The rank of a task is based on its computational weight,

which is defined as the sum of the task’s computational and
communication cost , with the and

 of successive tasks with the highest rank until the last
task of the workflow, according to Equation (1).

. (1)

Where, represents the successive tasks of task to
the last task of the workflow.

B. Processor Selection

The processor selection is performed in three steps: cluster
allocation, resource allocation, and task mapping.

1) Cluster Allocation

In the cluster allocation step the MCA-HEFT heuristic

defines whether a given task can be scheduled to multiple
clusters or to a single one, based on a metric called ,

which is defined with basis on the Computation to
Communication Ratio (CCR) and parallel fraction . The
CCR is an estimate of the amount of computation performed
along with communication, and the is used to estimate the
CCR of the parallel portion of parallel task only.
The of a task is defined according to Equation (2):

. (2)

The threshold variable named MCA is based on
the of a task. If the of a task is lower than
MCA the task is executed in one cluster, if the task is greater
than MCA the task can be executed in multiple clusters. MCA
is defined empirically based on the network infra-structure.

2) Resource Allocation

In the resource allocation phase a certain amount of

resources is allocated to task . For each task, the allocation is
performed as follows: first, resources are allocated
to the task, and then new resources are allocated to the task
according to threshold variables MCAMAX and MCAIMP.

The MCAMAX variable defines the maximum amount of
resources that can be allocated to a single task. The resources
considered are the total number of nodes in all the clusters.

The allocation process begins allocating to each
task. Then, for each level, the total number of resources is
divided among the tasks. Each task receives a number of
resources proportional to the rank value according to Equation
(3) where represents the total number of
resources of cluster . However, of a task has to be
lower than the MCAMAX.

. (3)

The MCAIMP threshold variable is a percentage which is
used to define that in order to allocate a new resource to the
task, the computational cost must be decreased by at least
MCAIMP percentage. The computational cost of a task is
defined in Equation (4) in terms of amount of instructions, and
the execution time is defined in Equation (5) in seconds
according to the estimated amount of instructions.

. (4)

. (5)

The is the computational power of the cluster
in MIPS and is calculated according to Equation (6), where

 is computational power of resource .

. (6)

The computational power considered is the
lowest computational power among all clusters. The allocation
of nodes is increased by one if is lower
than by at least MCAIMP percentage.

3) Task Mapping

The mapping is performed following the rank order. The

tasks are mapped to the cluster which has an amount of free
resources that is greater than or equal to the amount of
resources allocated to the task. The clusters are verified in
decreasing load order. The cluster load is defined by Equation
(7), where, is the amount of resources of cluster
which has already been allocated.

 . (7)

In case no cluster has more free resources than the ones
allocated to the task, MCA-HEFT can change the amount of
resources allocated to the task or map the task to multiple
clusters. If the MCACCR of a task is greater than MCA the
task is mapped to multiple clusters, otherwise MCA-HEFT
allocates the task to the least loaded cluster. After the task is
mapped to the cluster the least loaded resources in the cluster
are chosen.

IV. EVALUATION

We evaluate MCA-HEFT by comparing its produced
makespans against the ones produced by M-HEFT. We chose
M-HEFT because it is an efficient heuristic for scheduling
workflows and is based on HEFT. To perform the experiments,
we developed a simulator based on SimGrid toolkit version
3.6.2 [10] using its MSG framework. We used simulations, as
they are a mean to study the scheduling heuristics in a
repetitive and controllable environment.

A. Experiment Setup

We modeled the multi-cluster environment called

Distributed ASCI Supercomputer 3 DAS-3
1
, located in the

Netherlands. Such environment is composed of 277 processors
located in 5 clusters the number of processors varies from 30 to
90 and the average processor speed is 2.4 GHz. The
interconnection speed between nodes in the same cluster is an
average of 1 GB/s and the interconnection speed between
nodes of different clusters is an average of 100 MB/s.

1
 DAS-3 website: http://www.cs.vu.nl/das3/index.shtml

Table 1. Evaluation Workload.

Tasks Levels MCACCR > MCA (%) Critical Path Size

Few-tasks-by-level

21

29
37

46

55

3

4
5

6

7

33

34
38

41

33

290

383
482

573

666

Various-tasks-by-level

55

89
93

113

117

6

8
9

10

11

33

43
31

45

44

574

760
874

957

1053

Many-tasks-by-level

39

56
56

92

133

2

3
3

4

7

31

30
36

40

37

189

290
294

385

676

We modeled a set of workflows using a script that follows

the approach of automatic DAG generators [2]. The workflow

generation is defined by the following parameters: number of

levels, minimum and maximum number of tasks per level.

Based on the following parameters the generator defines

values for computational cost, communication cost, and

parallel fraction of each parallel task of the workflow. The

workflows’ characteristics that we used for the evaluation are

presented in the three sets of Table 1.We evaluated the

allocation process and the performance efficiency of MCA-

HEFT over a variety of scenarios using such workflows.
In the three sets an average of 37% of tasks can potentially

be scheduled in multiple clusters. The workflow tasks in the
Few-tasks-by-level set have a high probability of being
executed in multiple clusters, because few tasks can have large
allocations. The workflow tasks in the Various-tasks-by-level
set have lower probability of being executed in multiple
clusters, because the workflows have more tasks by level than
the Few-tasks-by-level set. The workflow tasks in the Many-
tasks-by-level set have a very low probability of being executed
in multiple clusters, because each level has a great number of
tasks which will make tasks to be allocated on a few resources.

B. Result Analysis

Table 2 shows the number of allocated resources per

heuristic and the percentage of tasks mapped to multiple
clusters by using MCA-HEFT. We observe that, by comparing
the average number of resources allocated for each workflow in
all the sets, MCA-HEFT produces larger allocations than M-
HEFT.

The makespan produced by the three sets are shown and
compared with the critical path size. Figure 2 shows the
makespan for the sets Few-tasks-by-level, Various-tasks-by-
level, and Many-tasks-by-level respectively. The results show
that MCA-HEFT has a better performance than M-HEFT. The
average performance improvement is 8%, 20%, and 42% for
Few-tasks-by-level, Various-tasks-by-level, and Many-tasks-by-
level, respectively.

Table 2. Resource Distribution.

Avg. Number of
Resources MCA-

HEFT

Avg. Number of
Resources M-HEFT

Tasks Mapped to
Multiple Clusters MCA-

HEFT (%)

Few-tasks-by-level

24
26

26

25
25

13
10

9

8
7

10
10

11

13
9

Various-tasks-by-level

22
18

21

19
20

7
5

5

5
5

7
11

5

7
9

Many-tasks-by-level

7
9

9

8
11

8
7

7

5
4

0
2

4

1
3

In order to understand the performance improvement of the

proposed heuristic, we analyze three aspects: (i) how resources

are allocated; (ii) the impact of network infra-structure on the

execution of workflows; and (iii) the relation between critical

path size and performance improvement.

Figure 2. Makespan of the Few-tasks-by-level Set, Various-tasks-by-level Set, Many-tasks-by-level Set.

1) Resource Allocation

MCA-HEFT allocates more resources to single parallel

tasks than M-HEFT because the number of available resources
considered by MCA-HEFT is the sum of all resources in all the
clusters. MCA-HEFT can therefore map a single task to
multiple clusters to guarantee that it receives the resources
specified by the first phase of the heuristic. Such allocation
process, combined with the prioritization of resource allocation
to the tasks in the critical path, contributed to the performance
improvement compared with M-HEFT scheduling the same
workflows.

The number of tasks scheduled in multiple clusters is
inversely proportional to the number of tasks by level. For
Few-tasks-by-level, an average of 11% of tasks were scheduled
in multiple clusters, for Various-tasks-by-level, an average of
8% of tasks were scheduled in multiple clusters, and for Many-
tasks-by-level, an average of only 2% of tasks were scheduled
in multiple clusters. These values are encouraging as they show
that makespans can be reduced using up to 11% of tasks on
multiple clusters.

2) Network Impact

In order to evaluate the network impact we measured the

time spent performing computation and communication for

each workflow task. Then, we calculate the average and

standard deviation of time spent performing communication

operations in all workflows for the three sets, as shown in

Table 3.

 The average time spent performing communication is

short in M-HEFT and long in MCA-HEFT. Such results were

expected since a number of tasks was executed using a low

speed communication infra-structure, also the standard

deviation is high indicating a great difference of

communication costs among tasks.

Such results show that a good estimation of tasks that need

to be mapped to multiple clusters is important to improve

makespans. This is mainly necessary to minimize the

execution time considering the communication overhead.

3) Critical Path Size x Performance Improvement

The results show a relation between makespan and critical

path size. In Figure 2 one can notice that the longer the
makespan the higher the performance improvement between
makespans produced by MCA-HEFT against makespans
produced by M-HEFT. Such relation can be explained
considering two aspects: the MCA-HEFT scheduling process is
performed by levels and MCA-HEFT prioritizes the scheduling
of tasks on critical path.

The scheduling plan of a workflow is performed by levels.
In each level the makespans produced by MCA-HEFT may
have a better performance or a worse performance than that
produced by M-HEFT. The MCA-HEFT heuristic has a worse
performance in the levels that has many tasks that has a high
communication cost and low computational cost, due to the
fact that MCA-HEFT does not use the network bandwidth or
latency as scheduling parameters.

The scheduling of workflows with few levels containing
many tasks with high communication cost and low
computational cost using MCA-HEFT will have a better
performance than M-HEFT. In the case of workflows with
many levels, when the critical path is low the MCA-HEFT
scheduling plan of each level will probably have a worse
performance than M-HEFT because tasks on critical path will
have a sharply improvement on execution time, thus, the
MCA-HEFT performance will be similar to M-HEFT. When
the critical path is high the tasks on critical path on each level
have the execution time heavily improved, consequently the
scheduling plan of each level has a better performance than M-
HEFT, thus, MCA-HEFT performance is better than M-HEFT.

In cases where the number of tasks per level is high, MCA-
HEFT allocates a minimum number of resources to almost all
tasks, and only the tasks on the critical path are allocated to a
high amount of resources. All these factors make the
performance of MCA-HEFT better than M-HEFT as seen in
Figure 2.

V. RELATED WORK

The MCA-HEFT heuristic is a list scheduling heuristic

based on HEFT [11] [6] with the objective of scheduling
workflows with sequential and parallel tasks on multi-cluster
environments. A number of strategies for scheduling
workflows with sequential tasks in grid environment have been
developed [12], some of these strategies have been extended in
order to consider the task parallelism, such as, Parallel HEFT
(P-HEFT) [13] and M-HEFT.

M-HEFT [3] extends HEFT to the case of data-parallel
tasks and a platform that consists of heterogeneous clusters. M-
HEFT considers each task as a parallel task [14]. In this sense,
the weight of tasks is computed on all possible subset of
resources of each cluster and the weight of data transfer
between tasks is computed by the sum of the average network
latency and data size divided by bandwidth of each pair of
resources in each cluster.

The execution of parallel tasks on multiple clusters has been

investigated by several authors [7], [15], [16], [17], [18], [19],

[20]. The main reasons for executing a parallel application on

multiple clusters are: (i) applications may require certain

computing power that is not available in a single cluster; (ii)

users may want to reduce the response time of their

applications by using resources from multiple clusters; or (iii)

user can have lower response time by merging fragments of

multiple scheduling queues. One key issue is the possible

bottleneck of the inter-cluster network overhead. Most of the

 MCA-HEFT M-HEFT

 AVG SD AVG SD

Few-tasks-by-level 770 455 0 1

Various-tasks-by-level 14821 12401 1 4

Many-tasks-by-level 205 440 0 1

Table 3. Network Execution Time.

studies considering this issue showed that 25% of the total

application execution is a tolerable overhead value. The main

limitation of the projects that worked with resource co-

allocation is that they considered parallel applications in an

isolated fashion, i.e. having no influence on what needs to be

executed before or after them, which is the case explored in

this paper. The proposed heuristic can split tasks onto multiple

clusters considering workflow task dependency.

VI. CONCLUSION AND FURTHER WORK

We introduced a heuristic called MCA-HEFT for

scheduling workflows composed of sequential and parallel
tasks. The key novelty of MCA-HEFT is that it explores the
possibility of mapping parallel tasks in multiple clusters. We
performed a detailed analysis of the benefits of MCA-HEFT
compared to M-HEFT, which is one of the most efficient
heuristics in the literature.

A metric called MCACCR was created in order to define
whether the task can have the performance improved by being
executed in multiple clusters. Such metric takes into account
the parallel task characteristics and the infra-structure
characteristics. One interesting finding is that, based on our
workloads, scheduling approximately only 10% of the tasks to
multiple clusters, it is possible to reduce drastically the
makespan of the workflow executions.

As future work, we will explore data transfer between tasks
and dynamic task mapping inside MCA-HEFT. Moreover, we
are planning on performing experiments on a multi-cluster
production environment.

REFERENCES

[1] I. T. Foster, “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations,” 2001, pp. 1–4.

[2] H. Casanova, F. Desprez, and F. Suter, “On cluster

resource allocation for multiple parallel task graphs,” Journal

of Parallel and Distributed Computing, vol. 70, no. 12, pp.

1193–1203, Dec. 2010.

[3] T. N’Takpe, F. Suter, and H. Casanova, “A

Comparison of Scheduling Approaches for Mixed-Parallel

Applications on Heterogeneous Platforms,” in proceedings of

the Parallel and Distributed Computing, 2007. ISPDC ’07.

Sixth International Symposium on, 2007, p. 35.

[4] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.

C. Sevcik, and P. Wong, “Theory and Practice in Parallel Job

Scheduling,” Proceedings of the Job Scheduling Strategies for

Parallel Processing, pp. 1–34, 1997.

[5] J. Yu, R. Buyya, and K. Ramamohanarao,

“Workflow Scheduling Algorithms for Grid Computing,” in

Metaheuristics for Scheduling in Distributed Computing

Environments, 2008.

[6] H. Topcuouglu, S. Hariri, and M. Wu,

“Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing,” IEEE Trans.

Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[7] M. A. S. Netto and R. Buyya, “Resource Co-

Allocation in Grid Computing Environments,” in Handbook of

Research on P2P and Grid Systems for Service-Oriented

Computing: Models, Methodologies and Applications, IGI

Global, 2010, pp. 476–494.

[8] P. F. Dutot, T. N’takpé, F. Suter, and H. Casanova,

“Scheduling Parallel Task Graphs on (Almost) Homogeneous

Multicluster Platforms,” IEEE Transactions on Parallel and

Distributed Systems, vol. 20, no. 7, pp. 940–952, 2009.

[9] T. Shanley, Infiniband. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2002.

[10] H. Casanova, A. Legrand, and M. Quinson,

“SimGrid: A Generic Framework for Large-Scale Distributed

Experiments,” in proceedings of the Computer Modeling and

Simulation, 2008. UKSIM 2008. Tenth International

Conference on, 2008, pp. 126–131.

[11] M. L. Pinedo, Scheduling: Theory, Algorithms, and

Systems, 3rd ed. Springer, 2008.

[12] J. Yu, R. Buyya, and K. Ramamohanarao,

“Workflow Scheduling Algorithms for Grid Computing,” in

Metaheuristics for Scheduling in Distributed Computing

Environments, 2008.

[13] J. G. Barbosa and B. Moreira, “Dynamic scheduling

of a batch of parallel task jobs on heterogeneous clusters,”

Parallel Computing, vol. 37, no. 8, pp. 428–438, Aug. 2011.

[14] F. Suter, F. Desprez, and H. Casanova, “From

Heterogeneous Task Scheduling to Heterogeneous Mixed

Parallel Scheduling,” in Proceedings of the 10th International

Euro-Par Conference (Euro-Par’04), Pisa, Italy, 2004, vol.

3149, pp. 230–237.

[15] M. A. S. Netto and R. Buyya, “Rescheduling co-

allocation requests based on flexible advance reservations and

processor remapping,” in 2008 9th IEEE/ACM International

Conference on Grid Computing, 2008, pp. 144 –151.

[16] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R.

Yahyapour, and A. Streit, “On Advantages of Grid Computing

for Parallel Job Scheduling,” in Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster Computing

and the Grid, Washington, DC, USA, 2002, p. 39–.

[17] W. M. Jones, W. B. Ligon,III, L. W. Pang, and D.

Stanzione, “Characterization of Bandwidth-Aware Meta-

Schedulers for Co-Allocating Jobs Across Multiple Clusters,”

J. Supercomput., vol. 34, no. 2, pp. 135–163, Nov. 2005.

[18] Q. Snell, M. J. Clement, D. B. Jackson, and C.

Gregory, “The Performance Impact of Advance Reservation

Meta-scheduling,” in Proceedings of the Workshop on Job

Scheduling Strategies for Parallel Processing, London, UK,

UK, 2000, pp. 137–153.

[19] H. H. Mohamed and D. H. J. Epema, “Experiences

with the KOALA co-allocating scheduler in multiclusters,” in

IEEE International Symposium on Cluster Computing and the

Grid, 2005. CCGrid 2005, 2005, vol. 2, pp. 784 – 791 Vol. 2.

[20] A. I. D. Bucur and D. H. J. Epema, “Scheduling

Policies for Processor Coallocation in Multicluster Systems,”

IEEE Transactions on Parallel and Distributed Systems, vol.

18, no. 7, pp. 958–972, 2007.

