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Abstract—Azure Cloud offers a wide range of resources for
running HPC workloads, requiring users to configure their de-
ployment by selecting VM types, number of VMs, and processes
per VM. Suboptimal decisions may lead to longer execution
times or additional costs for the user. We are developing an
open-source tool to assist users in making these decisions by
considering application input parameters, as they influence
resource consumption. The tool automates the time-consuming
process of setting up the cloud environment, executing the
benchmarking runs, handling output, and providing users with
resource selection recommendations as high level insights on run
times and costs across different VM types and number of VMs.
In this work, we present initial results and insights on reducing
the number of cloud executions needed to provide such guidance,
leveraging data analytics and optimization techniques with two
well-known HPC applications: OpenFOAM and LAMMPS.

Index Terms—HPC, Cloud, Resource Selection, Benchmarking,
OpenFOAM, LAMMPS

I. CLOUD RESOURCE SELECTION

Access to HPC resources through the cloud is becoming
increasingly relevant in different industries, research, and
engineering institutions. While delivering access to a flexible
capacity on-demand, cloud imposes significant pressure on
performance tuning and cost-effectiveness of workload execu-
tion. With resources available on a flexible, per-minute billing
basis, it is essential to configure job execution to minimize
both wall-clock time and cost, finding the optimal balance.

In the cloud, if scalability remains near ideal, reducing
resources will not lower job costs. Sometimes, scalability can
be super-linear, where more nodes and cores improve perfor-
mance due to memory bandwidth amplification, especially for
specific cases like CFD or Explicit FEA. In these scenarios,
using more nodes may be cheaper if the licensing model
permits, allowing faster results.

Latest architectures, for example AMD chiplet-based CPUs
like Naples/Rome/Milan/Genoa, bring a huge core density
possible on a single socket. On memory-bound workloads,
selecting the optimal CPU per node is crucial for maxi-
mizing memory bandwidth per core. Moreover, technologies
like AMD L3 Cache provide significant memory bandwidth
amplification to be taken into consideration.

An optimal selection of the number of cores and process
placement is always critical for the best cost/performance
optimized execution [1]–[4]. However, achieving that selection
is not trivial for users, especially those who are not IT experts.

II. HPCADVISOR AND SCENARIO OPTIMIZATION

In this poster, we describe an open-source tool1 to help
users select Cloud resources considering VM types, number
of VMs, processes per VM, and application input parameters.
The tool performs the end-to-end cycle of setting up a cloud
environment, running scenarios, organizing the output, gener-
ating plots, and providing the advice as a Pareto front with
execution time and costs as objectives.

The tool currently assumes no or little data available from
previous executions—it relies on data analytics and optimiza-
tion techniques to reduce the number of scenarios to be used
in the cloud. As we embrace cases where substantial data is
available, we will consider machine learning techniques too.
We created a predictor that reduces the scenarios by exploring
two cases: (i) same application input but different VM types;
and (ii) same VM type and different application input.

The first case leverages known data points—original VM
type for the tested number of nodes, and one or two data
points for the target VM type; all with the same application
input. We predict the execution times by scaling the data
points of the original VM type with an optimal scaling factor,
which is calculated using an objective function that penalizes
deviations between known data points of the original VM type
and predicted times, obtained via linear interpolation across
the segments of the curve for different number of nodes.
The function then uses the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) iterative method to optimize the scaling factor for the
best fit, and finally generates a new curve. For the second case,
we use application input (i.e. number of atoms for LAMMPS
or number of cells for OpenFOAM) as multiplication factor
for generating the new data points, as such input has a direct
impact on execution time.

III. EXPERIMENTS AND FINDINGS

In the poster, we show three types of plots considering
execution time, costs, and different numbers of VMs for
two applications, OpenFOAM and LAMMPS (accessed via
EESSI [5]), and three different values of an input parameter for
each application. We also show predictions for the two cases
above for both applications, illustrating that several scenarios
can be eliminated when generating the recommendation of

1https://azure.github.io/hpcadvisor/

https://azure.github.io/hpcadvisor/
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Predict exectime on "HC" using data from "HBv2" and 1 scenario of "HC"
 same workload: OpenFOAM=11M cells

scenarios executed: VM type=HBv2
actual values: VM type=HC
predicted values VM type = HC
scenario(s) executed: VM type=HC

Fig. 1. Predict the execution time curve using data from a different VM type
and same application input—example for OpenFOAM.
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Predict exectime for OpenFOAM=8M cells on "HBv3" using 
data from OpenFOAM=11M cells on "HBv3"

scenarios executed: VM type=HBv3 and 11M cells
actual values: VM type=HBv3 and 8M cells
predicted values: VM type=HBv3 and 8M cells

Fig. 2. Predict the execution time for the same VM type but with different
application input parameter—example for OpenFOAM.

2 4 6 8 10 12 14 16
Number of Nodes

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Predict exectime on "HC" using data from "HBv2" and 1 scenario of "HC"
 same workload: LAMMPS=864M atoms

scenarios executed: VM type=HBv2
actual values: VM type=HC
predicted values VM type=HC
scenario(s) executed: VM type=HC

Fig. 3. Predict the execution time curve using data from a different VM type
and same application input—example for LAMMPS.

resource selection to users. For OpenFOAM we used the Mo-
torBike benchmark and for LAMMPS we used Lennard-Jones
benchmark. We used three VM types: HC, HBv2, and HBv3,
(AMD 44, 120, and 120 cores, respectively), interconnected
by an InfiniBand network. And explored scenarios with up to
16 VMs, which is equivalent to 1,920 cores.

Our initial findings are that we can reduce a large percentage
of scenarios to be executed in the cloud without requiring
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Predict exectime for LAMMPS=864M atoms on "HBv3" using 
data from LAMMPS=256M atoms on "HBv3"

scenarios executed: VM type=HBv3 and atoms=864M
actual values: VM type=HBv3 and atoms=256M
predicted values: VM type=HBv3 and atoms=256

Fig. 4. Predict the execution time for the same VM type but with different
application input parameter—example for LAMMPS.

or generating extensive data (Figures 1, 2, 3, and 4). Some
application input parameters have high influence on resource
consumption, whereas others have none or minimal [3]. Thus,
in practice, we can consider application input parameters for
resource selection advice in the cloud, as long as there is a
prior knowledge on their influence on application run times.

These findings are relevant to user workflows, such as, in
OpenFOAM external aerodynamics, which typically involves
running multiple simulations with varying geometries to meet
performance targets. Once a new project starts, new geome-
tries and conditions require investigation. This often results
in changes to mesh size or specific simulation parameters.
HPCAdvisor can help identify the best cost/performance con-
figuration using minimal data, like a single simulation, by
leveraging historical simulation data. As users adopt new hard-
ware quickly, HPCAdvisor can speed up initial tuning, helping
them quickly find the optimal setup for their calculations.

IV. NEXT STEPS

We will expand the experiments by considering more appli-
cation input parameters and their influence on resource usage
and execution time. We will also explore infrastructure metrics
to reduce the number of required scenarios to generate the
resource recommendations.
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