
HPCAdvisor: A Tool for Assisting Users in
Selecting HPC Resources in the Cloud

Marco A. S. Netto
Microsoft

Redmond, USA
marconetto@microsoft.com

Abstract—Cloud platforms are increasingly being used to run
HPC workloads. Major cloud providers offer a wide variety of
virtual machine (VM) types, enabling users to find the optimal
balance between performance and cost. However, this extensive
selection of VM types can also present challenges, as users must
decide not only which VM types to use but also how many
nodes are required for a given workload. Although benchmarking
data is available for well-known applications from major cloud
providers, the choice of resources is also influenced by the
specifics of the user’s application input. This paper presents
the vision and current implementation of HPCAdvisor, a tool
designed to assist users in defining their HPC clusters in the
cloud. It considers the application’s input and utilizes a major
cloud provider as a use case for its back-end component.

Index Terms—HPC, Cloud, Resource Selection, Performance,
Cost, Assistance Tool

I. INTRODUCTION

HPC cloud has become a reality in several industries.
When companies and research institutions began assessing the
feasibility of using the cloud for HPC workloads, extensive
research was conducted on performance evaluation and cost
analysis [1]. Today, we see various ways HPC is being
utilized in the cloud, especially with the rise of new AI-based
applications. Companies from multiple industries are creat-
ing Software-as-a-Service solutions to host simulators. Some
companies provision on-demand multi-user clusters, offering
them as Infrastructure-as-a-Service. Additionally, institutions
provide users with cloud credits, enabling them to create their
own clusters or resource pools on-demand.

A typical HPC application requires instructions on where to
run, including the resource type, number of cluster nodes, and
processes per node. In an on-premises setting, the resource
type may correspond to a queue defined by a scheduler.
In a cloud environment, the variety of resource types is
often greater compared to on-premises resources due to the
flexibility of configuring resources and the faster availability
of new options. Traditionally, benchmarking is conducted to
determine the best cost-performance setup. However, not every
group or institution may have the resources or expertise to
perform this benchmarking.

In this context, a user intending to run an application
with specific input parameters or files would ideally use a
service or tool to specify these details. The tool would then
provide a list of resource options, considering performance

and cost trade-offs, to assist in making the final decision.
With a substantial database of historical executions and an
application with a reduced set of input parameters that influ-
ence resource selection, it may be possible to generate this list
of resource options without the need for additional testing or
execution. In a recent paper [2], Lamar et al. discuss job run
time predictions considering application input parameters, and
they highlight that although applications have a wide variety
of parameters, a few of them actually influence application
resource consumption/execution times.

Moving to the cloud or experimenting with new workloads
means that such data is not always available or complete. Gen-
erating such data means creating an environment in the cloud,
generating scenarios, executing the scenarios, collecting the
data, deactivating the environment, and filtering and organizing
the data. These steps may be time-consuming, especially when
one is in the early stages of moving HPC workloads to the
cloud.

In this paper we introduce HPCAdvisor, an open-source
tool to advise users on cloud resource selection decision
for HPC workloads. The tool aims at helping users select
VM type, number of nodes, and processes per node taking
into account application input. Its current implementation
focuses on the automated data collection given an easy-to-
use, yet flexible, interface to users. With basic information
such as Cloud account, specifications of scenarios defined by
VM types, number of nodes, processes per node, application
input parameters, and the specifications to set up and run
the application, the entire cloud environment is automatically
created, scenarios are executed with all combinations of user
input, data is collected, filtered, and organized. Users can
also access automatically generated plots that expose data
on execution time, costs, speed up, and efficiency. Advice is
provided as a Pareto front form, exposing the best solutions
in the search space considering execution time and cost.

The contribution of the paper is a description of the end-to-
end design, implementation, and user experience of the tool
to achieve a fully automated life cycle for data collection to
assist in resource selection for HPC workloads in the cloud.
We present a few examples of automatically generated outputs
using both OpenFOAM and LAMMPS applications with up
to two thousand cores and VMs with InfiniBand networks.
We also discuss ongoing optimizations we are implementing



to minimize the need to run certain scenarios based on
existing runs. Its implementation is available on GitHub1 and
contains examples for well-known HPC applications, such as
WRF, NAMD, OpenFOAM, LAMMPS, and GROMACS. We
describe the implementation relying on a back-end based on
Azure Batch, which is a middleware to support cloud-native
executions of various workloads in Azure. This back-end can
be replaced if needed.

In its current format the benefits of the tool are:
• Automated data collection: The tool automatically cre-

ates the cloud environment, executes scenarios, collects
data, and organizes it.

• Automated plots: The tool generates plots that expose
data on execution time, costs, speed up, and efficiency.

• Flexible: The tool relies on bash scripts to set up and run
applications, which can be easily customized.

• Parameter Sweep: As is, the tool can be used to per-
form parameter sweeps for HPC applications in a cloud
environment, providing a full end-to-end solution.

• Advice: The tool provides advice in Pareto front form,
exposing the best solutions in the search space consider-
ing execution time and cost.

• Open source: The tool is open source and can be
expanded according to user needs.

In its future format, we plan to:
• Smart sampling: Implement a module that can be used

as a stand-alone to minimize the need to run certain
scenarios based on existing runs. Having this module as a
stand-alone allows its usage in situations where there are
already existing tools in place for resource provisioning,
job submission, and/or benchmarking.

• Comprehensive advice: Implement a module to provide
more comprehensive advice; e.g., apart from providing
only the Pareto front, we envision the advice being used
to provide recipes to run jobs (e.g., Slurm scripts) or
computing environment creation/modification (e.g., clus-
ter creation or scheduling queue creation/modification).

II. RELATED WORK

Related to our work are efforts on (i) application per-
formance prediction models and tools; (ii) cloud resource
selection; and (iii) HPC benchmarking tools.

Application performance prediction has been vastly studied
over the years [2]–[9], both for HPC and non-HPC applica-
tions. Performance prediction helps with capacity planning,
including cases where different hardware configurations need
to be assessed for new resource acquisition. Several companies
as well as research and engineering institutions have bench-
marking teams to help with this task. Another driving force for
performance prediction studies is job scheduling. Traditionally,
job schedulers require users to estimate runtime of their jobs

1https://azure.github.io/hpcadvisor/

in order to make scheduling decisions. Such estimates are hard
for end-users to obtain [10], [11].

Several techniques have been explored for performance
prediction. For instance, motivated by improving scheduling
outcomes, Tsafrir et al. [5] developed a technique for job
scheduling based on system-generated job runtime estimates
that uses the average time of the previous two job run-
time values. This strategy comes from their conclusion that
users tend to submit similar jobs over a short period of
time. Yang et al. [6]’s technique predicts the execution time
of jobs across multiple platforms. They use data collected
from short executions of a job and the relative performance
of each platform. After warm-up phases, several computer
simulations may have fixed execution time per time step.
Smith [7] developed a prediction system based on Instance-
Based Learning techniques, leveraging genetic algorithms to
refine input parameters of the prediction model. Yang et
al. [12] introduce a framework called PREP (Path RuntimE
Prediction), which explores the running path of jobs to predict
their runtime. Their framework uses support vector regression,
decision trees, and random forest. Lamar et al. [2] conduct
a study on job run time prediction focusing on application
input parameters. They evaluated over 20 machine learning
model variants and analyzed the influence of the various input
parameters for multiple applications, including ExaMiniMD,
LAMMPS, NEKbone, SWFFT, and HACC.

We have also seen efforts on performance prediction in the
context of cloud computing. For instance, Mariani et al. [8]
introduce a machine-learning methodology to help users select
the best cloud configurations for a given workload before
deploying it in the cloud. They couple a cloud-performance-
prediction model on the cloud-provider side with a hardware-
independent profile-prediction model on the user side. Users
need to do some profiling on their applications using their on-
premises resources. Betting et al. [9] introduce Oikonomos, a
data-driven resource-recommendation system for HPC work-
loads in the cloud. Their system is based on a Multi-layer
Perceptron to predict application performance by exploring
both application input parameters and instance types. Brunetta
and Borin [13] propose a methodology to help users select
cloud resources for HPC workloads. Their predictions rely
on the first paramount iterations of the application for each
cloud resource selection. They highlight the importance of
using actual input of the application versus smaller input
datasets. Samuel et al. [14] introduce a framework called
A2Cloud-RF, which aims at matching scientific applications
to cloud instances. They rely on a random-forest model, which
allows predictions based on input application’s characteristics
or application classes.

On the HPC benchmarking side, there are several tools
and services available. Here we highlight a few of them.
For instance, ReFrame [15] is a framework for system re-
gression tests and benchmarks focused on HPC environments.
It allows users to write portable tests in a declarative way
and hides complexity of several stages of the tests including
compilation, job submission, and, programming environment,

https://azure.github.io/hpcadvisor/


Fig. 1. Overview of the HPCAdvisor tool.

among others. Ramble [16] is a multi-platform framework
that can be used to configure experiments, including scientific
parameter sweeps, performance scaling studies, and compiler
flag sweeps. Pavilion2 [17] is a framework for running and an-
alyzing tests on HPC systems. Users can specify experiments
using YAML files and the framework hides the complexity
of interacting with the underlying systems to generate the
benchmarking results.

We aim to deliver an easy-to-use, practical, flexible, and
open-source tool for HPC cloud resource selection, incorporat-
ing existing and cutting-edge prediction techniques throughout
the development process.

III. HPCADVISOR: DESIGN AND IMPLEMENTATION

In this section we explain in detail the design and implemen-
tation of the HPCAdvisor tool. We provide an overview of the
tool, the major configuration files and scripts, the internal flow
of execution, and how the tool interacts with cloud services.
We also describe how the tool can be expanded and some
ongoing developments. The tool is open source and in constant
development.

Figure 1 depicts an overview of the HPCAdvisor tool.
The core HPCAdvisor tool is a Python-based program that is
invoked by the end-user. The tool can be used in the browser
or Command Line Interface (CLI). Based on user input, HP-
CAdvisor automatically provisions the cloud environment to
run different scenarios, collects all data from such executions,
and deletes the cloud environment if user desires. Once this is
done, users can generate plots and get advice data to make the
resource selection based on a Pareto front of the best options
considering execution times and costs. Users may choose to
run all scenarios, or rely on module to do smart sampling,

i.e. it selects a subset of scenarios based on existing data from
previous executions. We will go into further details of all these
steps in the next sections.

A. User Input

The tool expects two major input files from the user. The
first one is the main YAML configuration file, which requires
the following input:

• Cloud subscription: ID or name of the cloud subscrip-
tion where all resources are provisioned;

• Resource group prefix: string used as a prefix of the
resource groups where all resources are provisioned;

• Region: geographical region where the cloud resources
are provisioned;

• Application setup url: URL that specifies how the
application is set up and executed;

• Processes per resource: percentage of processes per
resource;

• Application inputs: application inputs (e.g., matrix size
for the matrix multiplication application, number of cells
or mesh definition for a CFD application such as Open-
FOAM, resolution for a weather forecast such as WRF);

• VM types / SKUs: specifies the list of VM types that
user wants to test;

• Number of nodes: list of the number of nodes that user
wants to test, e.g. 1, 2, 4, 8, 16, 32;

• Tag: identifications to be included into the results of the
experiments.

There are also a few optional parameters that are related
to VPN and jumpbox. It is a common practice to provision
resources with private IP addresses. For instance, a user can
set up a VPN and peer it to the HPCAdvisor virtual network.



HPCAdvisor also allows the creation of a jumpbox machine.
This machine can, for instance, have access to the shared file
system used by the cluster nodes, allowing the user to log in
and easily see all files being created by the multiple scenarios
under execution:

• VPN resource group (optional): existing resource group
that contains a VPN setup;

• VPN virtual network (optional): existing vnet name for
the VPN setup;

• Peer VPN (optional): boolean for peering with VPN
resource group / vnet;

• Create jumpbox (optional): boolean for creating a VM
in the same resource group.

Listing 1 illustrates an example of this main configuration
file. This example represents an experiment for OpenFOAM,
which assesses three VM types, six number of nodes, and two
definitions of mesh sizes. This generates 3x6x2 scenarios.

1 # Example of main configuration file
2

3 subscription: mysubscription
4 skus:
5 - Standard_HC44rs
6 - Standard_HB120rs_v2
7 - Standard_HB120rs_v3
8 rgprefix: hpcadvisortest1
9 appsetupurl: https://.../openfoam.sh

10 nnodes: [1, 2, 3, 4, 8, 16]
11 appname: openfoam
12 tags:
13 version: v1
14 region: southcentralus
15 createjumpbox: true
16 ppr: 100
17 appinputs:
18 mesh: "80 24 24"
19 mesh: "60 16 16"

Listing 1. HPCAdvisor main user configuration file.

The other main input from the user is the specification of (i)
how to set up the application and (ii) how to run the job, which
is a bash script containing these two major functions. Here, job
is the application plus its input parameters to be executed. The
setup of the application has two major parts: (a) download of
input data and (b) preparation of the application (e.g. download
application, compile application, setup licenses, or any other
mechanism to have the application ready for execution).

Application setup. There are various ways in which an
application becomes available to the end user. It can be
via downloading a binary file, through a set of compilation
scripts, or through an application installation framework such
as spack [18], easybuild [19], and EESSI [20]. The application
setup script can also be used to download data for the
application. This script is called every time a new VM type
starts to be tested. If the user does not want to prepare the
application again, or download the data again, a simple test
can be done to avoid repeating such setup.

Application run. This is where one specifies how the applica-
tion runs. This can be a simple mpirun command, or it may
contain other tasks including, preparation of input files based
on environment variables, setting up of process pinning, parse
of application metric data to be exposed to the generation of
plots or advice, among others.

1 #!/usr/bin/env bash
2

3 hpcadvisor_setup() {
4

5 if [[ -f in.lj.txt ]]; then
6 echo "Data already exists"
7 return 0
8 fi
9

10 wget https://www.lammps.org/inputs/in.lj.txt
11 }
12

13 hpcadvisor_run() {
14

15 source /cvmfs/software.eessi.io/versions
/2023.06/init/bash

16 module load LAMMPS
17

18 inputfile="in.lj.txt"
19 cp ../$inputfile .
20

21 sed -i "s/variable\s\+x\s\+index\s\+[0-9]\+/
variable x index $BOXFACTOR/" $inputfile

22 sed -i "s/variable\s\+y\s\+index\s\+[0-9]\+/
variable y index $BOXFACTOR/" $inputfile

23 sed -i "s/variable\s\+z\s\+index\s\+[0-9]\+/
variable z index $BOXFACTOR/" $inputfile

24

25 NP=$(($NNODES * $PPN))
26 export UCX_NET_DEVICES=mlx5_ib0:1
27 APP=$(which lmp)
28 mpirun -np $NP --host "$HOSTLIST_PPN" "$APP" -

i $inputfile
29

30 log_file="log.lammps"
31

32 if grep -q "Total wall time:" "$log_file";
then

33 echo "Simulation completed successfully."
34 APPEXECTIME=$(cat log.lammps | grep Loop |

awk ’{print $4}’)
35 LAMMPSATOMS=$(cat log.lammps | grep Loop |

awk ’{print $12}’)
36 LAMMPSSTEPS=$(cat log.lammps | grep Loop |

awk ’{print $9}’)
37 echo "HPCADVISORVAR APPEXECTIME=

$LAMMPSCLOCKTIME"
38 echo "HPCADVISORVAR LAMMPSATOMS=$LAMMPSATOMS"
39 echo "HPCADVISORVAR LAMMPSSTEPS=$LAMMPSSTEPS"
40 return 0
41 else
42 echo "Simulation did not complete

successfully."
43 return 1
44 fi
45 }

Listing 2. Application setup/run example for LAMMPS

Listing 2 shows a full script to set up and run LAMMPS
in the HPCAdvisor tool. As we can see here we have two
functions, hpcadvisor_setup and hpcadvisor_run



that sets up and runs the job, respectively. This example uses
EESSI to access the LAMMPS application. Therefore, the
setup of the application consists of only downloading the input
data. The second function contains a few more instructions. It
starts by enabling the use of EESSI and loading the LAMMPS
module (Lines 17–18), which as a consequence loads mpirun
as well—so both the application and the MPI environment
are provided by EESSI. Then it copies the download file
from the parent directory to the local directory that the script
runs (Line 21). Every job contains its own directory which is
automatically created by HPCAdvisor. Next step is to update
the input file according to the application input parameter we
want to assess. In this case, we want to use a box multiplication
factor to increase the number of atoms in the simulation (Lines
23–25). Once the input is ready, we specify a few variables for
the mpirun command to be executed (Lines 27–30). This part
could be extended to exercise different CPU pinning strategies
for example. The last part (Lines 32–46) has two major goals.
One is to assess if the application concluded its execution
properly, and one way to do is to check the content of its
log file. The second goal is to obtain some metrics from the
output, which will then be exposed into the dataset file, which
contains all output of the scenarios that were executed. Thus,
any line containing "HPCADVISOR variable=value" is
saved in the dataset file.

There are a few relevant variables that can be used inside
the hpcadvisor_run function. Table I describes those
variables.

TABLE I
ENVIRONMENT VARIABLES.

Variable Description
NNODES Number of cluster nodes
PPN Processes per node
SKU, VMTYPE Virtual machine type
HOSTLIST_PPN List of hosts and their PPN
HOSTFILE_PATH Path of hostfile
TASKRUN_DIR Directory of the job run

B. Environment Deployment

To collect new data for application executions with different
input parameters, a cloud environment needs to be deployed.
HPCAdvisor is able to automatically create a cloud envi-
ronment to collect such data. In the current implementation,
HPCAdvisor’s back-end relies on Azure, as the cloud provider,
and Azure Batch, as the resource orchestrator.

Here is the sequence used to provision the resources:
1) Variables. First step is to set up variables to be used in

all the other steps, including names for the resources,
images to be used, etc.

2) Basic landing zone. Next, a resource group is created,
along with a virtual network and subnet.

3) Storage account. Then a storage account to store batch-
related files and NFS is created.

4) Batch service. The final step is to create a batch service
with no resources.

5) Jumpbox and network peering. Optionally, HPCAd-
visor can also create a jumpbox machine and perform
network peering, for instance, when a VPN is in another
virtual network. The jumpbox can be useful for logging
in and easily navigating files created during the scenario
executions or performing small tests.

As HPCAdvisor is open source, the back-end can be re-
placed. We plan to create a couple of other back-end examples,
including one that uses Slurm directly.

C. Data collection

Once the environment is deployed, the data collection phase
can begin. The first step is to create the list of scenarios
(or tasks) to be executed based on the main configuration
file (Listing 1). Here we take all the VM types, number of
nodes, processes per node, and application input parameters
to generate all combinations. This list is recorded and stored
in a JSON file. The list also contains the status of the task,
which can be pending, failed, or completed.

Then, a loop goes through the list of tasks to execute them
and collect data as described in Algorithm 1. Every time a
new VM type needs to be assessed, a new pool of resources
is created, and a setup task is executed. The number of nodes
that the user requested for testing is then incremented in the
pool. Once the pool is utilized, it is reduced to zero nodes or
deleted, depending on user preference.

Costs for data collection. It is important to note that data
collection incurs a cost. In a later section, we will describe
approaches we are investigating to reduce the number of
scenarios that need to be executed. From a cost perspective,
users typically do not collect data solely to obtain advice
for a single production execution. Instead, they often perform
parameter sweeps, leading to multiple executions with similar
resource usage patterns, which helps offset the cost of the
advice. When this payoff occurs depends on the application,
its input parameters, the number of scenarios executed, and
the resource usage.

D. Plots

Once the data is recorded from the data collection phase,
plots and advice can be created.

For now, HPCAdvisor generates four types of plots:
1) Execution Time vs Number of Nodes. Plots the ex-

ecution time as a function of the number of nodes for
each VM type.

2) Execution Time vs Cost. Plots the execution time as a
function of the cost to run each task for each VM type.

3) Speed up. Plots how much faster the parallel execution
over multiple nodes is compared to single node.

4) Efficiency. Plots how effectively the computing re-
sources are being utilized when solving a problem using
multiple nodes (speed up over number of nodes).

For the plot feature, we also allow customization of subtitles
for the plots. Here are the plots exactly as created by the
HPCAdvisor tool (Figures 2, 3, 4, 5). This is an example for a



Algorithm 1: Process a List of Tasks (Scenarios)
Input: A list of tasks, tasks
Output: Processed results

1 previousVMType ← ∅;
2 foreach task in tasks do
3 if previousVMType ̸= task.vmtype then
4 if pool exists then
5 resize pool to zero or delete pool;

6 create setup task(task);

7 pool ← resize pool(task.vmtype, task.nnodes);
8 create compute task(task);
9 execute compute task(task);

10 store task data(task);
11 update task status(task, completed);
12 previousVMType ← task.vmtype;

13 if pool then
14 resize pool to zero or delete pool;

15 return Processed results

LAMMPS workload with three VM types, each containing 44,
120, and 120 cores, interconnected by an InfiniBand network.
Scenarios run up to 1,920 cores. When using the CLI, the
plots are generated in the current folder, and when using the
GUI, the plots are presented in the UI to the user. The cost
represented here is for the VMs only, without considering
other costs such as software license, storage, or any additional
services. In Figure 5, we observe an efficiency greater than 1,
which represents a super linear speed up using multiple nodes.
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Fig. 2. Plot example: Execution Time vs. Number of Nodes.

E. Advice

When providing advice on how a given workload should be
run, the two major factors usually considered are performance
(time to completion) and costs (money spent to run the
workload). Sometimes, a more efficient execution may cost
more money, while a cheaper execution may take longer.
Additionally, there are cases where the best option is indeed
the cheapest and fastest. For this reason, providing the user
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Fig. 3. Plot example: Execution Time vs. Cost.
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Fig. 4. Plot example: Speed up.
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Fig. 5. Plot example: Efficiency.

with a single option to run a given workload may not be
the best approach. Even if we let users specify their main
objective, i.e. cost or performance, the choice may still be
subjective. For instance, would one be willing to get 20%
faster results by paying 10% more, or a solution that is 18%
faster by paying 2% more? For this reason, providing the
Pareto front that considers both execution time and costs
seems to be a better approach. The Pareto front represents
the solutions that are Pareto efficient, i.e. a set of solutions



that are non-dominated relative to each other but are superior
to the rest of solutions in the search space. Figure 6 helps
illustrate the concept; execution time and cost are the factors
we want to optimize (Y axis and X axis); blue circles represent
the executed scenarios and the red line represents the Pareto
front.
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Fig. 6. Advice based on pareto front

The tables below (Listing 3 and Listing 4) represent
the actual advice output from HPCAdvisor for two exam-
ples: (i) the OpenFOAM example with the configuration of
“BLOCKMESH DIMENSIONS” set to “40 16 16” for the
motorBike example containing 8 million cells and (ii) the
LAMMPS example, which is based on the official LAMMPS
Lennard Jones benchmark (“atomic fluid with Lennard-Jones
potential”), in which we multiply the box dimensions by 30
to obtain 800 million atoms. The advice data presented here
is sorted by the least execution time first, but the tool has the
option to have the data sorted by cost as well.

1 Exectime(s) Cost($) Nodes SKU
2 34 0.5440 16 hb120rs_v3
3 38 0.3040 8 hb120rs_v2
4 48 0.1920 4 hb120rs_v3
5 59 0.1770 3 hb120rs_v3

Listing 3. Example advice: OpenFOAM.

1 Exectime(s) Cost($) Nodes SKU
2 36 0.5760 16 hb120rs_v3
3 69 0.5520 8 hb120rs_v3
4 132 0.5280 4 hb120rs_v3
5 173 0.5190 3 hb120rs_v3

Listing 4. Example advice: LAMMPS.

F. Optimizations for scenario generation and executions

Another key component of the HPCAdvisor, which is still
under development, is the optimization of scenario generation
and execution. We envision a solution to resource selection

in which a user would provide the application with its input
files and parameters, and the user would receive a list of
options (e.g. the Pareto front discussed previously) to run
their workloads, and this list would require minimal or no
executions in the cloud.

If there is enough data from previous executions, depending
on the application, it may be possible to create a machine
learning-based model (existing literature shows some efforts in
this area [2], [8], [14]). In certain scenarios with small amounts
of data, a simple regression analysis could help, especially
if the application is better-behaved. If scenario execution
is required, we can then also explore the fact that several
HPC workloads have a steady execution time per step (after
warm-up) [6], [13]. So one could get some approximation of
execution times and costs.

Our focus now on optimizations is to assume that little or no
data is available. Therefore, the strategy we are investigating
is to have a flexible set of scenarios to be executed at the
data collection phase. The strategy would then be to identify
which new scenarios would need to be executed to obtain
the best “return on investment”, i.e. scenarios that would help
provide more information for generating the Pareto front. It is
worth highlighting that our aim is not to determine the exact
execution times and costs for all scenarios, but to generate
a Pareto front to advise the user on resource selection. We
want to avoid using computing resources to find information
in a search space; problem that can be mapped to Design of
Experiments.

A few strategies in this direction we are currently investi-
gating are:

• Aggressive scenario discarding. Whenever there is evi-
dence, at a given threshold, that a VM type will probably
not be part of the Pareto front, we ignore all scenarios
with that VM type.

• Fixed performance factor. Some applications scale well,
so by identifying the influence of the application input
parameters and using the data from previous scenarios,
new curves could be identified. We are currently explor-
ing regression techniques and obtaining positive results
for some workloads. For instance, by using the same
VM type but different application input parameters and
their influence on execution time, or by using the same
application input parameters but analyzing a different VM
type, we can identify scenarios that should or should not
be in the Pareto front.

• Infrastructure bottlenecks. For each scenario executed,
it is possible to identify how long it took. However, with
proper monitoring, it is also possible to identify possible
bottlenecks while executing the scenario via infrastructure
related metrics such as CPU, memory, network utiliza-
tion. This can also serve as a hint to identify and prioritize
the next scenarios to be executed, or even discarding ones
that will not be part of the Pareto front.



TABLE II
COMMANDS FOR CLI EXECUTION MODE.

Command Subcommand Description
create Creates a cloud deployment

deploy list Lists all previous and current cloud deployments.
shutdown Shuts down a given cloud deployment, deleting all its resources.

collect - Collects data, i.e. runs all scenarios on a given deployment.
plot - Generates plots using a given data filter.
advice - Generates advice (i.e. Pareto front) using a given data filter.
gui - Starts the GUI mode.

IV. TOOL USAGE

The setup and usage of the HPCAdvisor tool is straight-
forward. The user needs to clone the Git repository and
activate the Python virtual environment or install the tool via
PIP. Once this is done, the tool can be used either via the
Graphical User Interface (GUI) (browser) or via the command
line interface (CLI).

Figure 7 shows a screenshot of the tool under the GUI
execution mode. On the left side of the screen, we have the
major operations that the tool can perform, and on the right
side, we see the screen of the data collection phase, where a
deployment is already available in the cloud, and the user can
start to collect data.

Fig. 7. Screenshot of the tool in the data collection step.

The user can also opt for a Command Line Interface (CLI)
execution, where commands and subcommands are available,
as described in Table II. The major input files are the two ones
described in Section III-A.

V. FINAL REMARKS AND NEXT STEPS

This paper introduced the vision and current development
status of a tool to help users select cloud resources to run
HPC workloads. The tool is open source, which allows it to
be further extended according to different environments and
needs.

We believe the current implementation of the tool is flexible
enough to support custom definitions for setting up an applica-
tion to run, while keeping the user input simple and intuitive.
The tool, in its current form, serves as an easy mechanism for

running benchmarks in the cloud. We have made significant
progress in generating data, visualizing results through plots,
and providing users with advice on resource selection, taking
into account both execution time and cost. We have success-
fully tested it with applications such as WRF, OpenFOAM,
GROMACS, LAMMPS, and NAMD.

The ongoing effort for the tool is to focus on optimizing the
necessary executions to obtain such advice while expanding
the examples to consider applications with multiple input
parameters and various ways they impact the execution time
and the consumption of computing resources. We also want
to ensure the user experience using the tool continues to be
straightforward with no additional setups, which is particularly
important for users with no background in cloud computing.
Given the availability of benchmarking tools, we are also
investigating the integration of such tools to help on the
data collection phase, while focusing on avoiding unnecessary
executions to generate user insights.
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[20] B. Dröge, V. Holanda Rusu, K. Hoste, C. van Leeuwen, A. O’Cais, and
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