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Abstract

Numerical analysis of Markovian models is relevant for perfance evaluation
and probabilistic analysis of systems’ behavior from saMields in science and
engineering. These models can be represented in a compaairfausing Kro-
necker algebra. The Vector-Descriptor Product (VDP) iskineoperation to ob-
tain stationary and transient solutions of models repteseny Kronecker-based
descriptors. VDP algorithms are usually CPU intensive, irgtg alternatives
such as data partitioning to produce results in less timés p&per introduces a
set of parallel implementations of a hybrid algorithm fontlling descriptors and
a detailed performance analysis on four real Markovian rsodehe implemen-
tations are based on different scheduling strategies \SpegnMP and existing
techniques of static and dynamic load balancing, along datia partitioning pre-
sented in the literature. The performance evaluation stahfains analysis of
speed-up, synchronization and scheduling overheadsptapking policies, and
memory affinity. The results presented here provide insightdifferent imple-
mentation choices for an application on shared-memoryesystand how this

application benefited from this architecture.



Keywords: Parallel Algorithms, OpenMP, NUMA Machines, Markovian

Models, Kronecker Descriptors, Performance Evaluatiarer8ific Computing.

1. Introduction

Markovian modeling is an important tool to understand peaid from sev-
eral fields,e.g., Bioinformatics, Economics, Engineerang] more specifically to
predict the behavior in the Computer Systems domain. Theserag normally
require large amounts of memory and processing power foreoehensive de-
scription and fast solutions. Kronecker descriptors [1} cainimize memory
consumption as they are compact structures to representiarge Markovian
systems. A myriad of structured formalisms that use Kroeeg¢tensor) alge-
bra as a compact representation is available to the reseansmunity [2], e.g.,
Stochastic Petri Nets (SPN), Process Algebra (PEPA), anch8stic Automata
Networks (SAN), among others.

There are many numerical alternatives to extract resudta inalytical mod-
els such as simulation and iterative numerical methods. rasi&cker descriptors
are represented in a different structure than traditionatkdvian systems new
solution algorithms had to be designed. Specialized nuwalealgorithms were
then developed throughout the years to provide supporthi@istationary solu-
tion of models. In particular, the most effective soluti@me obtained by Vector-
Descriptor Product (VDP) algorithms, suchStsufflg3] and Split[4] algorithms.
The main difference between these algorithms resides inetipéired additional
memory and computational cost in terms of floating-pointtiplications.

In this sense, VDP is the key operation to achieve numeraatisn for sys-

tems represented by descriptors. The VDP operation mekipl probability vec-



tor by a descriptor, which is composed of tensor product $€f3h Each term

corresponds to a set of small matrices and tensor producatops. The numeri-
cal solution is usually achieved by several VDP iterationsl eonvergence, and
the processing time of each product is proportional to treeidgtor complexity,

i.e. the number, size, and sparsity of tensor product teAmsng several solution
methods [5, 1], we have applied the Power method as an exarhipdeative pro-

cess containing VDP calls, since to test the performandeeo$plit algorithm we
are mainly interested in the VPD procedure alone, rather thanalyzing how
quickly the overall method will converge. Other methodshsas Arnoldi and

GMRES can be also composed of iterative VDP calls, but thdser shethods
may be unaffordable for large models, since they demandiaddi probability

vectors that may not fit into the available memory.

Algorithms’ evolution, processing power and storage ofdineent computing
resources have enabled the evaluation of large MarkoviatelaoAlthough this
resource capability is very powerful to handle the systeroisplexity, it is still
not enough to handle several iterations in feasible timerdfore, as most of the
current machines are based on multi-core technology, thela@ment of parallel
solutions to accelerate VDP operations becomes essedriekster et al. [6] have
developed a parallel solution of Kronecker Descriptorssabering data partition-
ing strategies for the Split algorithm. However, this firsrglel approach was
only based on MPI [7] primitives and presented low scalgbin a distributed
memory computing platform.

This paper introduces a set of parallel implementationssf@ared-memory
machines of the Split algorithm running inside Power metherhtions, and a

detailed performance analysis on four real Markovian n&d€hese implemen-



tations are based on different scheduling strategies . BpenMP (Open Multi-
Processing) [8] and existing techniques of static and dyndaoad balancing,
along with data partitioning available in the literature ®]. The performance
evaluation study contains analysis of speed-up, synchation and scheduling
overheads, task mapping policies, and memory affinity. dselts presented
here provide insights on different implementation choifmsan application on

shared-memory systems and how this application benefiedthis architecture.

2. Solving Structured Markovian Models

Markovian models are widely used in the analysis of compgpstem perfor-
mance, reliability, availability, and dependability [Although, in general, when
a more complex behavior needs to be represented by a Markom,atne can
take advantage of structured Markovian formalisms [2].i€cker (tensor) alge-
bra [11, 12] operators are employed to represent the undgtyarkov chain [3]
of structured models in a compact format. A system represdnta tensor struc-
ture, i.e., the model, is also referred to in the literatiedarkovian descriptor.

Descriptors are composed of a set of tensor product ternjg¢pPesenting
the dependent entity behavior (each one with its own staig$ransitions), and a
tensor sum gathering independent state transitions [3ch entity. These tensor
operations are composed of low dimensional matrices, sorasthighly sparse,
responsible for conveying the transition system beingesgmted, e.g., using a
high level formalism such as Stochastic Automata Netwa84&\) [13, 3].

Figure 1 depicts the two options of the mapping process gkldarkovian
models in a structured description that undeniably redtliesieeds of memory,

avoiding the storage of one single, and usually large, flatimm&Remark that the



set of tensor product terms composed of smaller matrice®iced through Kro-
necker operators, is equivalent to the underlying Markaairchransition matrix

that is never stored in memory.
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Figure 1: Mapping process of large Markovian models to a @ohpepresentation.

Among several structured formalisms present in the liteeaf2], those using

a tensor structure are dependent of specialized numentalas. These solu-
tions are concerned in multiplying pieces of a probabiliéggtor (as large as the
model state space) by a set of matrices that composes theptesclt is well
known that inside product state spaces there are sets cdahakle states, i.e.,
some approaches are already proposed to reduce the sizeprbthability vector
to contain only references to the reachable state space.eWowsome models
present characteristics enabling the product state spdoe almost comparable
to the reachable state space, and particularly for theselsidtie solution need
to be calculated with vectors sized as the product stateespatependent of the
compact storage of the transition matrix. Nevertheless,atfact that operating

large probability vectors combined with sets of differepause matrices directly



influences the total time spent on performing floating-poiattiplications.

Despite the state space explosion problem, often resgderisitthe growth in
requirements to store the solution vector, the basic ideadmerically solving
models represented by tensor structures is to deal effigiasth vector multi-
plications by blocks of non-zero elements inside the dpsari This operation is
calledVector-Descriptor ProducfVDP). There are two known VDP algorithms:
the Shuffle algorithm [3] and the recent Split method [4, 14].

2.1. Shuffle Algorithm
The Shuffle algorithm implements the product of a probabitéctor by the

descriptor taking advantage of tensor algebra properieohduct the overall
multiplication process [11, 3]. A probability vector is sssively multiplied by
each tensor product applying the tensor algebra propertthéodecomposition
of a tensor product term in a product of normal factors [3]isTdecomposition
allows the treatment of each matrix in a tensor product terra way that sub-
vectors composed of shuffled elements (from the originalorgare used in the
multiplication. Briefly explaining, the property consistshreaking, e.g., decom-
posing, a tensor product term into a product of new tensodymbterms (the
normal factors), each one with one single matrix and evengromatrix as an
Identity matrix. For more information on the application Kifonecker algebra
properties, please refer to Fernandes et al. [3]. TheretbeeShuffle algorithm
does not require extra memaory to store other matrices oa éxtyge vectors.
However, one of the drawbacks of the Shuffle algorithm is asglexity in
accessing descriptors’ data, since it is stored in a comfpact. Note that de-
scriptors are relatively complex to operate due to the testsocture despite their

advantage in terms of memory efficiency [3]. Additionallgchuse of the decom-
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position in normal factors executed for every tensor prodern, the numerical
computations depend on one another to complete the maditpins. The depen-
dency established among normal factors makes it extrenaetytb devise means
to parallelize the multiplication of tensor product termghwut compromise per-
formance. The problems aforementioned have motivated ¢helapment of a
hybrid numerical algorithm handling the trade-off to balamemory usage, and

maximizing efficiency in terms of execution time.

2.2. Split Algorithm

The Split algorithm [4, 15] is a hybrid method that executedrm permuta-
tions and aggregations to reduce the cost in floating poittipfications inside it-
erative methods. Moreover, recent developments [16, M heoposed a heuris-
tic, flexible enough to perform fast iterations, for optimiz the execution time of
the VDP without impairing the memory, i.e., the algorithrmaaarrange matri-
ces in tensor product terms with different strategies,g&oizing the descriptor to
balance data storage and numerical operations. On itsesghle Split algorithm
deals with the generation of additive unitary normal fagtoemoving the Shuffle
algorithm’s constraint related to the sequential compatadf each normal fac-
tor. In other words, Split does not rely on breaking the temsoduct term into
dependable normal factors; on the contrary, Split gengratependent normal
factors, due to the additive decomposition property. Thigracteristic implies
that Split can be more suitable for parallelization effaitan Shuffle due to the
granularity allowed for tasks.

Figure 2 illustrates the Split algorithm handling Kroneckased descriptors
by gathering the set of tensor product terms, i.e., selgehatrices in a tensor

product term based oncut-parameter which separates the tensor product term
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in two different sets of matrices [15]. The set of matriceshat left side ofo
(i.e., matrices to combine) is treated in a sparse-like ragrwhere the non-zero
elements are combined through ordinary multiplicatiorecizcombination of el-
ements in this part is calletidditive Unitary Normal Facto{AUNF). An AUNF

is represented by a scalar, and its coordinatgyif the matrix. From a memory
efficiency point of view all AUNFs can be stored in a singlerspamatrix. The
set of matrices at the right side efis composed of the remaining matrices of
the tensor product term. These matrices are treated witfflisguoperations de-
pending on the heuristic adopted, maintaining the origeagor structure (named
shuffle-like part).

Set of tensor product terms Sets of AUNFs (combined matrices)
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Figure 2: Set of tensor product terms manipulated by the Siglorithm to generate AUNF sets.

Different heuristics [4, 15, 14] could be used to properleseand combine
matrices of tensor products on each sidesdio speed-up execution time. In
this paper we apply the heuristic proposed for Split [14¢fiing from the well-

known identities optimizatior§3]. According to this heuristic, only the identity



matrices are placed at right ef to skip the whole shuffle-part, operating only
in the combined matrices. The multiplication is simply jpenied considering
the product of a probability vector (state space sized) bgtadSAUNFs. This
multiplication process is repeated for all tensor prodaaotis in a descriptor for
each step of an iterative numerical method (e.g., Poweradetrnoldi).

Observe that in Figure 2, the sparse-like part is convertednew sparse ma-
trix, with its dimension related to the tensor combinatiéthe matrices at left of
o. This matrix contains the scalars that must be multiplietheyprobability vec-
tor. Moreover, the matrices at the right sidescdire omitted in the Split algorithm
data abstraction level, because using the basic heundtits case implicates just
in more multiplications of scalars (generated in the spaksepart), as the size of
the shuffle-like part (the product of the matrices order).

The operation flow of a sequential implementation of theaiige numerical
method using the Split algorithm is described as followssti-a model descrip-
tor (the set of tensor product terms) is loaded to memory.iniilal probability
vector positions are initialized (of size determined by ¢hedinality of the state
space). Then, for all tensor product terms, all AUNFs are@rguted and stored
in a list. The Split algorithm is executed using this list wcass and multiply
vector positions. Once Split is executed for a single iteratthe Power method
is called and tests if the model has reached convergencevaigséhe probability
vectors. If not, the Split algorithm is repeatedly executetll stationary regime
is achieved. The results are present in the final probalwéttor containing the
steady state information for the model.

The execution of the iterative numerical method in an efficreanner is de-

pendent on several factors: the size of the analyzed modehumber of matrices



represented in the tensor structure, the computationalrelaged to the sparsity
of these matrices, and the behavior adopted by Split sedtoug-parameter for
each tensor product term. Details on VDP methods can be foutite litera-
ture [3, 4, 15, 14].

2.3. Parallel Implementation Issues

The complexity in solving Kronecker based models is assediaith the state
space size and the issues related to the practical apphaaitspecialized iterative
numerical methods. As the AUNFs can be divided in self-doethgroups for
computation using the Split algorithm, it is a natural aitdive to decompose
descriptors within parallel environments. However, froglistributed computing
point of view, it is important to focus the study on perforroarrelated issues
such as the memory and computation bounds, and mainly orothelexity of
operations involved in each step of the algorithm.

We have studied how the algorithms can profit from parallgbathm ver-
sions and some observations have emerged. Shuffle is meifficrigre but de-
mands several numerical intermediary calculations to vpodperly. Split stores
AUNFs and precomputes positions that it will need afterwarghking it not so
memory efficient but faster when solving Kronecker desorgt Split also com-
bines the strengths of Shuffle and sparse storage techpiggieg a clever mech-
anism to address several positions within the Markoviarrioeg. One could say
that Split is more prone to have similar access patterns imang hierarchies
than Shuffle. All the precomputations that Split performlyamce in the overall
method are used throughout the VDP procedure. However, aite memory
efficiency, Shuffle always computes positions without sgn@oxiliary structures.

There are two main approaches to implement parallel VDPrigtgos: one
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based on message passing, for clusters, and another basddread-memory,
for multi-core machines. For both approaches, the mainlexingé is to define
the most suitable task set and size to assign to each proc&sscclusters, this
is challenging since gathering tasks for reducing comnatitn overhead may
cause a poor load balance. For multi-core machines, théedgal of the task
assigning comes from properly defining data locality anéddrload balancing.
For the specific case of this numerical algorithm, a potépt@rge vector is to be

manipulated and thus these parallel processing issuesbmatisken into account.

3. Markovian Model Examples

This section describes four families of stochastic autenmettwork models
varying the product state space sizes, i.e., the modeldassifted by their prob-
ability vector sizes$mall Medium andLarge). We chose these models because
they are representative cases with heterogeneous chisticse allowing us to
evaluate our implementations. We show different modelgiratteristics, such
as state space size, number of local and synchronizingaeat(composing re-
spectively a tensor sum term and the tensor product ternesyary to store the
descriptor (in Kb), quantity and the memory to store all AUNBenerated from
all tensor product terms), total time used by each iteratama the total number
of iterations), and sequential execution time for solutidote that the number of
iterations of each model solution is only related to the &veate values, having
no correlation with the state space size.

Additionally, for each model, we indicate that a model carekgnded (for
parallel tests execution, refer to Section 5.2) using thleviang variables: the

number of automata and the number of synchronizing everite.niemory sav-
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ings can be estimated looking at the number of matrices ceimgohe descriptor
and their number of non-zero elements (refer to Sectiondt.thbre information
as to how generate AUNFs from nonzero combinations). Witlthake param-
eters and using each indicated simplified formula, it is {pbsgo calculate the
number of tensor product terms in a descriptor for a givenbemof automata

and the related number of events.

3.1. Resource Sharing (RS) model

The classical SAN model for resource sharing [17], wheris the number
of processes (descriptor contains squared matrices wilrdws, i.e., automata
with two states:idle and occupied and R is the number of resources (squared
matrix with R+1 rows, indicating an automaton in which the states are fodm
R resources occupied).

Figure 3 graphically shows the SAN model with its synchrorgzvents (con-
sideringi = 1..P): eventea; (acquiring a resource) and event, (releasing a
resource). The model descriptor presents gene(al) synchronizing events,

totaling (4 P) tensor products witl?+1 matrices.

AP+ Type | Event | Rate
syn | ea; | A
| syn | eas | Ao

A AP)
er en en
() () o | )
ealeﬁ eaperp mzp syn | eap | Ap
syn | ery | 1
OO S
ap Ebp €ap

€
€

syn €9 H2
€ . . .

syn | erp | pp

Figure 3: RS Stochastic Automata Network model.

Note that the diagonal adjustment of the event rates aresepted 2P

tensor product terms and stored in a separated vector to lipled, which is
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an optimization in VDP methods [3], then there arétensor products remaining
to multiply using Split. The state space is given By x (R+1)] states, which
is the size of the input/output probability vector to be cédted in the numerical

solution. Table 1 illustrates the RS model’s variations dmalacteristics.

Table 1: Resource Sharing (RS) model configurations.

. Small Medium Large

Characteristics (RS) P=22; R=4; P=22; R=16, P=24; R=8
State Space (vector size) 20,971,520 71,303,168 150,994,944
Total Local Matrices (tensor sum) none none none
Total Terms (tensor products for Split) 44 44 48
Normalized Descriptor size (Kb) 10,267 34,844 73,763
Total AUNFs 176 704 384
Split Extra memory for AUNFs (Kb) ~2.75 ~11.00 ~6.00
Total multiplications (VDP) 369,098,752 1,476,395,008 3,221,225,472
Time per iteration (s) ~12 ~A47 ~105
Power methodterations 30 131 57
Total sequential time (s) ~350 ~6,197 ~5,997

3.2. Software Development Team (SDT) model

This section shows a model (Figure 4) that depicts a soft@avelopment
team (SDT) communication pattern with a main team, calledti@eteam, in a
globally distributed project [18], to analyze the probditas of waiting periods to
solve project issues by different participants.

The model is composed of a central team with two-state alttonepresent-
ing its availability for cooperation withV participants: Availability automaton
(statesA andU, i.e.,AvailableandUnavailablerespectively, related to time-zone
overlap in a typical workday), anctivitiesautomaton (with state®/ andC, i.e.,

ManagemenandCollaboratior). The model also contains a SDT composedof
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Type| Event Rate
loc a A
loc U Au
loc €1...6N | [l iy
loc Sfl...Sf]\ 01...0N
syn | coi...coy | aq...an
syn S1...SN ﬂl...ﬂi\/

Acthtzes Avazlabzlzty

Figure 4: SDT Stochastic Automata Network model.

three-state automata as follows$: state means the participanti®rking S state
represents the participaséeking for a specific informatipmand C' state means
the participant is collaborating to solve technical quei

Figure 4 illustrates the stochastic automata network spoeding to this sce-
nario. The local behavior of a team member describes thagnwhembers are
actually working, they can stop for a while (eveftseeking a solution on their
own (eventsf), or preferably move to cooperate with the central teamr(exs,
returning to the working state after that (eveht The model descriptor presents
generally(2x N) synchronizing events, totaling x V) tensor products witd+ N
matrices. Note that local events are stored together insotesum term(2 x N)
tensor terms are treated using Split. The state space is hiw€ x 2 x (3V)]
states. Table 2 illustrates the SDT model’s variations &radacteristics. Note that
we waited for the entire execution of the sequential progrémfind out the total
number of iterations. Also, note that the number of iteradifor the sequential

and parallel program is the same as we paralelized theidesathemselves.

3.3. Alternate Service Pattern (ASP) model

This section shows a model (Figure 5) for open queueing r&sy@2] having

four queues ™, A®) AB) AW) with finite capacities<;, K,, Ks, K,.
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Table 2: Software Development Team (SDT) model configunatio

Characteristics (SDT)

| Small (N=14) Medium (N=15) Large (N=16)

State Space (vector) 19,131,876 57,395,628 172,186,884
Total Local Matrices (tensor sum) 15 16 17
Total Terms (tensor products for Split) 28 30 32
Normalized Descriptor size (Kb) 9,351 28,036 84,088
Total AUNFs 72 77 82
Split Extra memory for AUNFs (Kb) ~1.13 ~1.21 ~1.29
Total multiplications (VDP) 376,260,228 1,205,308,188  3,845,507,076
Time per iteration (s) ~8 ~26 ~86
Power methodterations 78,045 71,057 75,259
Total sequential time (s) ~633,304 ~1,849,428 ~ 6,250,034
AD A® AB) AW AB)
esq(1)(m11) Type | Event | Rate

@ @ @ @ o C loc el A1

ol ol e ml Wl e i

0
[
@ ow
~—_

53/1(1)(7“2) syn
syn
syn
syn

€23
€34(1)
€34(2)

€4

€34(1)
€34(2)

€34(2) (T2

€4

Figure 5: ASP Stochastic Automata Network model.

In the routing pattern of customers they arrive4f) and.A® with constant

rates)\; and\,, respectively. Customers may leave froi!) to A®, if and

only if there is room in that queue (blocking behavior), wdas customers may

leave fromA® to .A®) whether there is room, or leave the model otherwise (loss

behavior). Customers may also leave frotf¥) to A™ with blocking behavior.

While A®, A® and.A™“ have standard (single) service behavior, i.e., consigerin

the same average service rate for all customers -, and 4, respectively),

queueA® has an Alternate Service Pattern (ASP) behavior. The serate for
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this queue varies according fodifferent service patterngi; . . . usp). A® can
exchange its service pattern simultaneously with the ersgfice of a customer.
Therefore, when a customer is served by the service pallgrmutomaton4®)
can remain serving the next customer in the same patterrpwotiability 7;;, or it
can alternate to a different service pattétn with probability ;; (for all service
patternsP; : 7, Py = 1).

Local eventse; ande, represent the arrival in queugE®? and A respec-
tively, and local event, represents the departure fro"). Synchronizing events
e13 andes, represent the routing between queuts to A® and.A® to A® re-
spectively, and synchronizing eves, represents both the routing from(® to
A®) and the departure frod® due to lack of room ind® (loss).

Note that the extension to a higher number of service patteilhcorrespond
to the addition of more local states to automatt/®, which will always haveP
local states. Events, (1) andes,(2) have constant ratgs;; andps, respectively.
Moreover, a model withP service patterns will contai® synchronizing events
e34(1) ... e3s(P) with rates given byus; ... u3p. The model descriptor presents
generally(2 + P) synchronizing events, totaling + 2P) tensor products with
five matrices (four matrices representing the queues andnariex representing
the service patterns)(2 + P) tensor terms are treated using Split. Note that
local events are stored together in a tensor sum term. Tteesgiace is given by

[K; x Ky x K3 x K, x P] states. Table 3 illustrates the ASP model’s variations.

3.4. Master-slave architecture (MSA) model

This section describes a model for an evaluation of the makiee parallel
implementation of the Propagation algorithm [19] consitlgasynchronous com-

munication. The model in Figure 6 is composed of btasterautomaton of three
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Table 3: Alternate Service Pattern (ASP) model configunatio

Characteristics (ASP)

| Small (P=5) Medium (P=12) Large (P=16)

State Space (vector size) 33,826,005 69,177,612 126,247,696
Total Local Matrices (tensor sum) 3 3 3

Total Terms (tensor products for Split) 7 14 18
Normalized Descriptor size (Kb) 16,517 33,780 61,647
Total AUNFs 67,700 336,576 697,840
Split Extra memory for AUNFs (Kb) | ~1,057.82 ~5,259.00 ~10,903.75
Total multiplications (VDP) 327,726,000 1,134,040,320 2,561,448,448
Time per iteration (s) ~12 ~48 ~110

Power methodterations 1,105 987 1,014

Total sequential time (s) ~13,332 ~47,089 ~111,336

statesiransmitting receivingandidle), S slaves (automata) with three states each

(idle, processingandtransmitting, and one larg8ufferof K+1 positions.

Buffer

r1..TN

syn | up A
syn | down |
syn Ci o
syn S; )
syn | T !
loc | pi | B

Figure 6: MSA Stochastic Automata Network model.

TheMasterautomaton is responsible for the distribution of tasksawest and

for the analysis of the results evaluated by them. A syndhnog event named

17



up sends the initial tasks to all slaves, and a synchronizieg&lownends one
execution of an application. The occurrence of the ewpnndicates that all au-
tomata must change their actual state for the initial oneaxcBgonizing evens;
represents the sending of a new task to#hle slave. AutomatorMaster con-
sumes tha@uffer content through the synchronizing eventFinally, Slavé? au-
tomaton finishes a task through the occurrence of local eyerfynchronizing
eventr; represents the reception of completed tasks byBtiféer. The model de-
scriptor present§3,5+3) synchronizing events, in a total @#5+6) tensor product
terms. Note that local events are stored together in a tensaorterm. (35+3)
tensor terms are treated using Split. The state space is giwg*+ x (K+1)].

Table 4 illustrates the MSA model’s variations and charasties.

Table 4: Master-slave Architecture (MSA) model configuas.

L Small Medium Large

Characteristics (MSA) S=10; K=256; S=12; K=70; S=14; K=14;
State Space (vector) 45,526,779 113,196,933 215,233,605
Total Local Matrices (tensor sum) 10 12 14
Total Terms (tensor products for Split) 33 39 45
Normalized Descriptor size (Kb) 22,241 55,283 105,109
Total AUNFs 15,445,438 38,021,576 71,974,528
Split Extra memory for AUNFs (Kb) | =~241,334.97 ~594,087.13 =~1,124,602.00
Total Multiplications (VDP) 570,498,594 1,683,360,438 3,598,616,402
Time per iteration (s) ~15 ~43 ~98
Power methoditerations 10,160 3,433 1,986
Total sequential time (s) ~152,211 ~149,070 ~194,628

4. OpenM P-based Split Algorithm

To achieve parallelism in the VDP method, we have to consldscriptor par-

titioning, i.e., use of techniques of data partitioning kpleit parallelism. This
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section presents data partitioning strategies for the VIR tlve Split algorithm,
describes the computational costs of the tasks generateaobrpartitioning strat-

egy, and the OpenMP-based Split implementations.

4.1. Data Partitioning Strategies

There are two ways to derive concurrency in the VDP method thié Split
algorithm: partitioning per tensor product term and piantihg per AUNF. This
section presents these two approaches, describing theemwhtasks and com-

putational costs involved on each one.

4.1.1. Partitioning per tensor product term

One partitioning approach is based on the total number oh&eker tensor
product terms, i.e., a set of tensor terms that form a bagsks to be distributed
among processors. The computational cost in multipliostielated to each term

is given by( % nzj(-i)> <Hf\iaj+1n§i)>, wherenz\" corresponds to the total

N n? s

number of non-zero elements in tivh matrix of the termyj and[[._, ., n;

the size of the vector to be multiplied. The total number ek&ato be performed
in parallel depends on the model characteristics, i.e ntineber of tensor product
terms in the descriptor. Remark that in the left side of Figreve have a set of
Kronecker products (tensor product terms). Consideringratipaing approach
per tensor product term, each tensor product term comptsgdescriptor is con-
sidered as a task to be assigned to one processor. Thusptiesgor executes all
multiplications related to this specific tensor productrtef~or example, for the
models RS, SDT, ASP and MSA we have the total number of tensdupt terms
given by:2P, 2N, 2+P, and3S+3 (Section 3), respectively. The total number of

tensor product terms refer to the number of tasks in thisagxgbr.
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As presented, the cost of each tensor product term is defim@alyrby the
number of nonzero elements and the value of the cut-parametén this ap-
proach, if we have tasks with very different costs and inti@@inumber, it can be

difficult to achieve an efficient load balance and scalahdftthe parallel solution.

4.1.2. Partitioning per AUNF

A different partitioning approach is to distribute the cartagion of each AUNF,
or a set of them, to each processor. In the Split algorithraryetensor product
term is subdivided in smaller tasks corresponding to AUN&Sthe K AUNFs
of the j-th term have the same cost, and if summed, the amount is &ntia
total cost of the term. The multiplication of each AUNF by &alof probability
vector represents an independent task, after then the resadcumulated in a
probability vector. The size of this slice of vector is givey [, |, n}’. The
total number of AUNFs per termi is given by the equatiod; = [, nzj(-i).
This approach is possible because every term has at leagtldiE. Observing
the right side of Figure 2, we have a set of AUNFs resultingifroatrices combi-
nations in a tensor product term. Considering a partitioaipgroach per AUNF,
each additive unitary normal factor (AUNF) composing theatgtor is consid-
ered an independent task to be assigned to a given proce&xsothe processor
will execute just the multiplications related to this AUN¥ote that each tensor
product term can generai€; AUNFs, i.e., independert; tasks.

In comparison to the previous data partitioning approachhave assembled
a larger number of tasks with lower computational costss #mabling better load

balance and scalability.
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4.2. Parallel Implementations

We have developed three parallel implementations of th& &glorithm for
shared-memory machines using the OpenMP API and the C++ dgeguThe
implementations differ in data partitioning and task schied strategies.

At the beginning of each iteration of the numerical methogaeallel region
is created. Split is a loop-based algorithm that iteratesregrthe tensor product
terms and AUNFs. Thus, the parallelization is accomplistmedugh the distri-
bution of loop iterations across the threads. The prolghiéctorr is a shared
variable that is updated at the end of each task. Therefoieyvariable access
must be protected to avoid data race conditions. For ergabiintiple threads to
update the shared vector we have used thatomicconstruct that is an efficient

alternative to theritical construct [8].

4.2.1. OpenMP-based scheduling

The first two parallel implementations use tbework-sharing construct from
OpenMP. They also use tlseheduleclause, which specifies how the iterations of
the loop are assigned to the threads. We choosdythamicschedule type with
task granularity equals to one. In this scheduling strategg iteration at a time
is assigned to each thread, until there are no more itectwailable [8]. The
dynamicschedule is more suitable to unbalanced workloads and wefyluwhen
the computational cost of the tasks is unknown. Additionathe chosen task
granularity is more flexible and generic concerning loa@dbeing and scalability
than larger ones. On the other hand, by using a generic getencan see more
clearly the differences among different input models.

Algorithm 1 presents the first parallel implementation thags partitioning

per tensor product term. A parallel region is created withdhrective#pragma
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omp parallel(line 1) and the loop is parallelized via tlier construct (line 2).

In this implementation, there affe tensor product terms to be distributed among
the threads following a dynamic scheduling strategy. Usimegprivate clause,
we specify that each thread has its own copy of variallés and vectow. In
addition, the shared variables are the isif AUNFs and the global state vector
The update ofr is performed in the inner loop (line 7), where we have the eded
information to compute the indices afto be updated. As multiple threads may
simultaneously write at the same positionsmofve treat the region (line 7) with

theatomicconstruct. The end of the parallel block occurs after line 7.

Algorithm 1. TP-Dyn - Partitioning per termj
#pragma omp parallel for private(j,k) schedule(dynamic,1)
for je[l...7T]do
for ke[l...K;]do
v = Alj].scalar[k] x my

#pragma omp atomic
T+=0v

~N o o b~ W N e

Algorithm 2: AUNF-Dyn - Partitioning perAUNF &

1 #pragma omp parallel for private(k) schedule(dynamic,1)
2 forke[l...K]|do
v = A.scalar[k] x mo

#pragma omp atomic
T+=0v

o O b~ W

Algorithm 2 uses a partitioning per AUNF and works similadyAlgorithm 1.
For this matter, Algorithm 2 has a global list of AUNFs and tzons a single loop

to iterate over the tasks. Therefore, there is one set ofteshksisting of all
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AUNFs of the descriptor to be distributed across the threads

4.2.2. Manual static scheduling

As the static schedule from OpenMP does not handle heterogeneous tasks,
we have implemented a manual static scheduling, which iscasworst-fit de-
creasingsolution for thebin packingproblem [20]. This strategy sorts the tasks in
descending order based on the computational costs of esiclana then sched-
ules one by one, beginning from the least loaded thread. Bygukis strategy all
threads probably will have tasks assigned impacting in tladability of the im-
plementation. Furthermore, when larger tasks are schediut¢ the load balance

is impacted (i.e., it is easier to obtain load balance waykuith small tasks).

Scheduling order: #Threads =4

#Total cost = 99

j1 =k ...ky (##Cost= 3 each) tr=(kulks [k | | )

(1 [ka ks [ka [Ks [Ko [K7 [Ks [Ko ] ~ #Cost=26

Jo = klO Ce k?lg (#COSt: 8 eaCh) b2 = [#klciLkSth 23| | ]

Frol b [z g ts = (k| kol by [ks [k7 )

j3 = kig . .. k15 (#Cost= 20 each) #Cost— 25

k14 le t4 = [k’11|k’13|]€2 |]€4 |k’8 ]
#Cost= 25

Figure 7: Static scheduling strategy.

Figure 7 exemplifies the static scheduling based implenientavhere there
are 15 AUNF$; . . . k15 to be distributed among four threads . . t,. All AUNFs
of each tensor product tergnhave the same computational cost. After ordering
all the tasks, those of the teryg having the highest costs are distributed one by
one for the least loaded thread, proceeding to the taskedétim;,, and so on.

Algorithm 3 introduces the third implementation that penfig a partitioning
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per AUNF to achieve better load balance. The algorithmstartcreating a paral-
lel region (line 1), which defines the private variables. Tdmks that each thread
handles are defined by two indicesart andend stored in theB structure (line

4) which is filled through an algorithm that implements thatggy illustrated by
Figure 7. Each thread reads the indices of its tasks thrasghkentifier, called
tid. The value stored in the varialtid corresponds to the thread number returned
by the functionompgetthread num available in the OpenMP library. Note that
B is filled in a preprocessing step, which was not considerdgbarexperiments

presented in Section 5 due to the negligible overhead obibesation.

Algorithm 3: AUNF-Man - Partitioning perAUNF &

1 #pragma omp parallel private(j,k,tid)

2 begin

3 tid = ompgetthreadnum()

4 forjel...T]do

5 for k € [B[tid].term[j].start..B[tid].term[j].end] do
6

7

8

9

v = Alj].scalar[k] x m

#pragma omp atomic
T+=0v

10 end

5. Performance Evaluation

This section presents an evaluation of the three parall@dEmentations of the
Split algorithm (Section 4.2), considering analysis ofexgpep, synchronization
and scheduling overhead, memory affinity, and task mappafigies. Moreover,
it describes a strategy for automatically selecting thé¢ ingslementation for each

Markovian model.
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We prioritize the use of examples with large state spacehiegthe limit for
machines with 4GB or even 8GB of RAM to demonstrate how thellgdization
improves the model solution in overall. Note that there isatural increase in
terms of solution power using parallelism because one cpotdntially store in
modern machines even bigger auxiliary vectors. We pointloait our aim is to
look at the time spent for each iteration in the VDP usingedéht partitioning

approaches so the gains are replicated in all numericalodetérations needed.

5.1. Environment Setup

We have performed experiments in a shared-memory machmeased of
two Intel Xeon E5520 (Nehalem) Quad-Core processors with kiyper-Threading
technology (totalizing 16 logical processors) and 16 GB efmory. This machine
is a Non-Uniform Memory Access (NUMA) system [21], where le@cocessor
access its local memory and with a higher cost the remote methmough the
Intel Quick Path Interconnect (QPI). Each processor ruzs2at GHz frequency,
8 MB L3 cache shared by all cores, 1 MB L2 cache and 128 KB L1 eaugr
core. The software stack is a Linux OS with g++ 4.2.4 comghet implements
the OpenMP version 2.5. All implementations were compilsiehg the compiler
optimization flag-O3.

Additionally, the experiments were performed using therietaving mode
from NUMA API [22] via the numactiLinux command. The interleaving mem-
ory allocation policy [22] is commonly used to improve memaccess perfor-
mance for bandwidth and its impact in our experiments isugised in Section
5.4. Furthermore, to avoid thread migration overheads ang resource sharing
between threads (for less than 16 threads) we have perfahmead binding via
schedsetaffinityroutine from GNU C library.
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5.2. Metrics, Models, and Algorithms

The experiments consider four models and three input s@esdch model.
A detailed description of each model is presented in Se@&jare., the variation
on the input sizes follow the number of tensor product temmeach descriptor,
which is based mainly on the number of synchronizing evergsegnmt in each
model. The main difference between the models is heterdatyesred the num-
ber of tasks involved in the computation. The models RS, SCHR,Aand MSA
(described in Section 3) have different number of tensodpecbterms in each
defined input size, thus determining the number of tasksuded on each par-
titioning approach. Additionally, we subdivided the maxlbhased on their task
patternshomogeneous task®ixed tasksandheterogeneous taskshe task pat-
tern named asomogeneous tasisrelated to those task sets where tasks have the
same (or very similar) computational costs in terms of flog{point multiplica-
tions. In themixed taskpattern, we have a set of tasks with equal costs and other
individual tasks with different costs. Finallgeterogeneous tasksdicate that no
matter which partitioning was used (per tensor product temn Coarse-grain
per AUNF, i.e.,Fine-grain), each task has a different computational cost in com-
parison to others. The main characteristics of each modkthaeir analyzed task

types can be seen in Table 5.

In Table 5, the columrCoarse-grainpresents the number of product tensor
terms that are present in each model descriptor for all cordtgons discussed in
Section 3. We also present the number of generated AUNFsicdlumn that

refers to theFine-graintasks.

26



Table 5: Model classification based on its task costs and eigéen of the number of tasks for
each granularity. The models differ in terms of number dt$and their computational costs that
are equal for the coarse and fine granularity, i.e., the &staRS model has 44 coarse-grained
tasks that have a computational cost in terms of multipboatequals to 369,098,752. In the fine
granularity the RS smallest input size has 176 tasks witlséinee computational costs.

Coarse-grain Fine-grain
Tasctype  |Moddl| o “Medium  Large] Small  Medium  Large
Homogeneous, RS 44 44 48 176 704 384
Mixed SDT 43 46 49 72 [ 77 [ 79 ‘
ASP 10 17 21 | ~68x10%® ~337 x10° ~698 x10°
Heterogeneous MSA | 43 51 59 | ~16x10° ~38x10° ~72x10°

We have executed each model for 2, 4, 8 and 16 threads to ohédiispeedup.
For each experiment, we have computed the standard deveati the speedup
based on the execution time of the Split algorithm measuved five hundred
iterations of the Power method. For fair comparison reasamsised this value
even for models that converge in less iterations. We evediihitee parallel imple-
mentations, namely P-Dyn (Algorithm 1, where we followed a partitioning per
tensor product term (coarse-grained tasks) following aadyio scheduling strat-
egy), AUNF-Dyn (Algorithm 2, by partitioning per AUNF (fine-grained tasks)
following a dynamic scheduling strategy, aAUNF-Man (Algorithm 3, where a
manual static scheduling using partitioning per AUNF wasdited). Although
we performed profiling analysis during the development af @pplication, we
found that more interesting results are related to OpenM#ementation choice

aspects. Therefore, we focus on those aspects in the néixinsec

5.3. Results and Analysis

Here, we present the main results of the three OpenMP-bag#ementations
of the Split algorithm for four Markovian models (Section B¥fter describing an

overview of the results, Sections 5.4 and 5.5 present thactrgd the interleaving
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policy and the overhead analysis, respectively.

5.3.1. Homogeneous tasks

This section presents the performance results for the RS Im&deh input
size generates a different number of coarse-grained angfaieed tasks (Table
5). Moreover, RS is classified as homogeneous-task-type Inmoie it has a set

of tasks with the same computational costs for each gratwular

8 8 8
7 7 7
?, g ST% g I% g B TP-Dyn
? 4 T 4 = [0 AUNF-Dyn
2 3 2 3 2 3 B AUNF-Man
)] 2 (%] 2 (%) 2
1 1 1
0 0 0
2 4 8 16 2 4 8 16 2 4 8 16
Number of threads Number of threads Number of threads
(@) Small. (b) Medium. (c) Large.

Figure 8: Speed-ups for the RS model and three input sibesnegeneous-task-type madel

Figure 8 depicts the speed-up of the three aforementionptementations.
Note that each one has a similar speed-up curve with a maxidiffienence be-
tween the highest and the lowest speed-ups about eightéecg, for the small
input size (a)). AUNF-Dyn has the best results for all inpaes, obtaining a
speed-up value of up to 6.8. This occurs because AUNF-Dyrsimadler granu-
larity compared to TP-Dyn, which allows OpenMP to have advettalability.

In addition, different from the AUNF-Man approach, AUNF-Dyises dy-
namic scheduling, which overcomes overheads caused byroesocontention
during the computation. On the other hand, AUNF-Man hasoisl Ibalancing
strategy based on precomputed theoretical costs, notd=rirgy that kind of cost.

One importantissue to observe in Figure 8 is that all implaiaténs obtained

a better scalability for eight threads than the obtainedfond 6 threads. This
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Figure 9: Speed-ups for the SDT model and three input sizeixed-task-type model

issue is confirmed on the other input models as well and itseceuexplained by
the core resource sharing, which occurs in the experimentsd threads where

there are two threads running on each core.

5.3.2. Mixed tasks

This section discusses the performance results for the ABPS®T mod-
els. In a general way, these models have tasks with diffe@nputational costs.
However, a wide range of tasks has the same computationsl ddserefore, the
ASP and SDT models have been classified as mixed-task-tydelmo

Figure 9 presents the speed-up curve for the SDT model. Tke tharallel
implementations scale up and have a similar speed-up corvallfinput sizes.
The speed-ups are very similar, because SDT model has areguhber of tasks
in both granularities (see Table 5). The number of tasksasigi to scale up until
16 threads. AUNF-Man approach obtains the highest speadiupe up to 5.4.
However, the performance gains are lower than those oltdanehe RS model.
The bottleneck for the SDT model is the synchronization logad as presented
in Section 5.5.2.

Figure 10 presents the speed-up curve for the ASP model. AMBIF im-

plementation has a better speed-up of up to 7.4. The smait sipe (a) has few
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tasks to distribute and hence not enough tasks to obtainchggadability with 16
threads on coarse granularity (TP-Dyn). The performanselteof (b) and (c)
inputs show that TP-Dyn scales up better, but still does calesup well with 16
threads. AUNF-Dyn showed the lowest speed-up values bedhesnumber of
loop iterations (tasks) is large enough to generate an eaérbf dynamic schedul-
ing. AUNF-Man works in the same granularity of AUNF-Dyn, lwith a static

scheduling strategy that does not generate the same odeab@dJNF-Dyn.
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Figure 10: Speed-ups for the ASP model and three input sirgiged-task-type model

5.3.3. Heterogeneous tasks

The Master-Slave Architecture (MSA) model is composed et@theteroge-
neous tasks on both granularities and a very large numbask$ {Table 5). Fig-
ure 11 presents the performance results. AUNF-Dyn did natse good speed-
up results for the same reason as the ASP model. The numlaesiksfto distribute
across threads is very large and g@hedule(dynamic,ldlause can produce an
considerable overhead in this situation. Furthermorethemgarameter that im-
pacts in the dynamic scheduling overhead is the number eftizrinvolved. This
can be observed in the experiments for 16 threads where tf@pance results
difference between the implementation AUNF-Dyn and theotnes are higher

in comparison to the experiments with a smaller number afats.
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Figure 11: Speed-ups for the MSA model and three input sizeterogeneous-task-type madel

In addition, similar to the SDT model, the MSA model presdradarge syn-
chronization overhead which is discussed in Section 5Be3pite this issue, our

parallel implementations generated a speed-up value af Gt

5.4. Impact of the interleaving policy

To improve performance and scalability in NUMA machiness important to
take into account issues such as memory and thread affiregtta jplacement and
thread binding become important aspects because local ipeancess is faster
than remote memory access and OpenMP 2.5 has no supportfoolting it [8].
There are several techniques that can help optimizing mgataess performance
for latency or bandwidth. Well-known strategies to perfatata placement are
first-touchandnext-touch23], interleaving policy{22], among others.

The sequential Split algorithm has a static memory acce$srpai.e., each
task accesses the same data during the entire applicagonten. Therefore, we
could reduce memory access latency in the parallel impléstiens by placing
each task into the memory bank of the processor executingatvever, many
tasks can read from and write to the same data during the &xecnot making it
possible to take completely advantage of the local dateeptent. Furthermore,

implementations that use dynamic scheduling normally laaveregular memory
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access pattern, which is another reason to not use locapl#et@ment strategies.
Therefore, we optimized our parallel Split implementasiéor bandwidth us-
ing aninterleaving policy{22]. The interleaving memory allocation policy defines
that each memory page is assigned in a round-robin fashientbe memory
banks. We improved the memory access performance for mostiroéxperi-
ments. Table 6 presents a summary of the improvements in agop to the

default memory allocation policy (local memory allocafion

Table 6: Interleaving mode impact for 16 threads and the umednput size.

M odel Performance Improvement
Medium input size TP-Dyn AUNF-Dyn AUNF-Man

RS 7.2% 24.9% 23.8%

SDT 7.8% 14.1% 17.0%

ASP 0.%% 11.3% -4.0%

MSA -2.5% 8.6% 2.2%

The interleaving strategy generated improvements of ubto. 2However,
ASP model with TP-Dyn and MSA model with AUNF-Man implemeinda, had
no considerable improvement. On the other hand, the ASP IaidF-Man and
MSA model/TP-Dyn, we obtained negative results causing allgperformance
loss. The reason is that each implementation requires exreliff memory access

pattern, accessing the remote memory more than expected.

5.5. Overhead Analysis

Parallel solutions developed via the OpenMP API can haveheagls related
to the thread management, scheduling clauses, time spkatriers, among oth-
ers [8]. This section presents the analysis of two kinds eflogad in OpenMP:

dynamic scheduling and synchronization.
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5.5.1. Dynamic scheduling overhead

Overheads of dynamic scheduling are a well-known drawlba€kienMP [8].
We have performed experiments to show the impact ostiieedule(dynamic,1)
strategy with the increasing number of loop iterationsc&ly in the range of
our Markovian models. Furthermore, a common solution feg gnoblem is to
increase the chunk size of tiseheduleclause [8]. However, this solution is not
suitable for heterogeneous workloads, leading to unsatsfy load balance. The
schedule(guided,19trategy is a better option that initially defines a largenthu
size and at each assigned chunk, decreases its size to 1.

In order to evaluate the scheduling clauses we have dewkfenchmark
with a loop, which performs a summation. The parallelizateoaccomplished via
thefor work-sharing construct and all threads update a privaiabig. Moreover,
the for construct is not combined with thgarallel construct to correctly profile

the execution time without the influence of thread creatizerioead.
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Figure 12: Overhead of dynamic scheduling strategies iotfon of the number of loop iterations.
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Figure 12 presents the processing time in seconds for therégl bench-
mark, parallel benchmark using teehedule(dynamic,land theschedule(guided,-
1) clauses. The results demonstrate that the overhead dyttaamic,1scheduling
strategy is related to the increasing number of loop itensti With a small number
of loop iterations, the generated overhead can be considtere From the graph,
we also observe that the overhead remains the same, evea high number of
iterations, when using thguided,1scheduling strategy. This result motivated us
to explore such strategy in our algorithms.

Thus, the use of guided scheduling type is a good solutiomprave our re-
sults from AUNF-Dyn with models ASP and MSA, since they havarge num-
ber of loop iterations (tasks) in the fine granularity. Hoemlwsing the guided
scheduling for heterogeneous workloads is not straigivdicd. Large chunks
are initially distributed across the threads, so if the tiasks assigned have high
costs and the next tasks assigned have low costs, someghnegdoecome over-
loaded, causing load imbalance. We have performed expetamath the use of
schedule(guided, lause in the AUNF-Dyn implementation by sorting the tasks

based on their computational costs in ascending and descenidier.

Table 7: Comparison betweelynamic,landguided,1scheduling speed-up values with different
task ordering strategies for 16 threads.

. : guided,1
Model | Input Size || dynamic,1 Ascending order Descending order
Small 5.44 7.92 5.72
ASP Medium 5.12 6.97 5.60
Large 491 6.79 5.56
Small 3.47 4.27 1.13
MSA | Medium 2.96 4.49 1.12
Large 2.92 4.75 1.18
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Table 7 presents the performance results for the guidediathg type with
different task ordering strategies. The results show homapplication is influ-
enced by overheads of dynamic scheduling. Moreover, gpthia tasks in de-
scending order of computational cost causes a considgpabii@rmance loss for
the MSA model. The same did not occur with the ASP model bexalmss less
heterogeneous tasks than MSA, minimizing load imbalanieztst In addition,
models ASP and MSA are more affected by overheads of dynarhedsiling be-
cause the number of loop iterations in AUNF-Dyn implemeatais considerably

higher compared to the other models.

5.5.2. Synchronization overhead

In order to measure overhead in a shared-memory paralldemgntation,
one can make a comparison between the time spent to exeausetuential
program against the time spent to execute the parallel @anogrsing 1 thread.
Here we measured the synchronization overhead [24] by &recthe parallel
implementation of TP-Dyn using one thread with and withdwtdtomicclause
(without any memory affinity optimization). Figure 13 pratethe percentage of
overhead computed for all Markovian models presented iti@&e8.

From Figure 13 we observe the high synchronization overlre#te execu-
tion for the models MSA and SDT compared to the RS and ASP modéiksre
we obtained better performance results. In order to vehié/dause of the high
overhead, we computed the number of accesses performeahecatgions. The
results from Table 8 show that there is no relation betweemtimber of accesses
to atomic regions with the level of overhead measured.

As the execution occurs with only one thread, the reasontisatated to com-

mon concurrency issues, such as race conditions or cacleeray problems.
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Figure 13: Atomic construct overhead.

Table 8: Relation between the increasing number of atongioneaccesses and overhead.

M odel Atomic region accesses Overhead
SDT large input size 5,682 1)° ~ 44%
ASP large input size 2,568 08 ~ 9%
SDT small input size 554 x0° ~ 41%
ASP small input size 329 x0° ~ 14%

During our experiments, we observed that the overheadslctccur in a spe-
cific part of the algorithm, where atomic updates are peréatno a entire vector
in a high number of iterations. Additionally, the problemsnbserved even using
other compilers and machines, for instance. Thereforej fvar experiments we
believe the synchronization overhead can come from a spedifux kernel or

compiler issue regarding lock management.

5.6. Automatic strategy choice

Although, we could use guided scheduling with task ordefasgending order
of task size) for models with large number of tasks and dynaoheduling for
models with small number of tasks, the results produced blg eaplementation

are highly dependent on other model characteristics andrsyarchitecture, such
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as memory access pattern and synchronization overheadsefdte, there is no
implementation that is able to produce the best resultslfonadels. In order
to solve this problem, we have measured the performance géieach parallel
implementation at the beginning of the numerical methodniovkwhat it is the
best implementation for each case. Thus, we have compuespted-up for five
iterations and five hundred iterations for all implememtasi and inputs.

Table 9 presents the results of the experiment. As we obdeima for most
of the results, the best implementation for five iteratianalso the best (numbers
in bold) implementation for five hundred iterations for &étMarkovian models.
When the results did not match, the difference between thedspps is minimal,
which means either implementations can be used.

Table 9: Comparison between the speed-up values for 16dh@atained in five iterations and
five hundred iterations for the three implementations amdMarkovian models. The obtained

results show that is often possible to know what is the beptamentation just looking at few
iterations. The values of the table represent the resudtscban the best implementations.

RS model SDT model ASP model MSA model
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o = a ) ) a D D o D D o D )

= I+ - < < - < < - < < - < <
Small 5 |/ 6.01 647 6.30| 520 530 5.24|3.93 801 7.14| 452 4.27 491
500 6.01 653 6.30| 5.30 5.11 537|390 7.92 7.40| 4.69 4.27 4.88
Medium 5 |/ 6.28 664 650 507 5.25 528 |4.79 717 6.39| 4.33 470 3.92
500 6.25 6.63 6.40| 5.02 5.27 531 |4.86 6.97 6.33| 4.34 449 3.90
Large 5 6.46 6.79 688 | 490 4.96 502 |6.12 680 540 473 459 454
9 500|| 6.66 6.74 6.68| 4.93 4.81 4.85| 6.15 6.79 5.34| 513 4.75 4.50

There is a cost associated to select the best implementai®mwe can exe-
cute each implementation sequentially, without necdysastarting the numer-
ical method, we can keep the last computed results and resxeneition after

choosing the best implementation. The cost is basicallystiramation of the
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execution time of the two worst implementations for fiveatégns minus the ex-
ecution time of the best one for ten iterations.
Table 10: Cost details of the automatic strategy choiceHembhedium input size, considering an

entire executionCost s the ratio of the total execution time using the automatiategy choice
to the total execution time with the best implementation.

Model Total of Total (s) First 15 iterations Remaining iter. Total (s) Cost
(Medium) iterations (Bestimpl.) TP-Dyn AUNF-Dyn AUNF-Man Chosenimpl.
RS 131 ~ 935 37.85 35.68 36.96 827.69 ~ 938 ~ 0.3%%
SDT 71,057 =~ 348,291 25.92 24.69 2451 348,218 ~ 348,293| =~ 0.000%%
ASP 987 ~ 6,756 49.08 34.22 37.68 6,653 ~ 6,774 | ~0.2%%
MSA 10,160 ~ 98,258 50.03 48.36 55.67 98,112 ~ 98,267 | ~ 0.009%

Table 10 summarizes the cost for finding the best implemientat relation
to an entire execution. The cost is higher when the diffezavfcthe execution
time of the best implementation compared to the other onégiser as well.
However, for ASP and MSA models the cost is diminished by &éingd number of
Power method iterations. In this sense, although the nuwibi&rations for the

RS model is small, the cost of the automatic strategy choiakssvery small.

6. Related Work

The related work for this paper comes from two research ateage Marko-
vian system solvers and performance evaluation of Opendtfed programs.

This section provides an overview of research projects filteese two areas.

6.1. Parallel solutions of Markovian systems

Parallel algorithms for solving large and sparse Markowgstems only re-
quire data loading into processors before starting conpataHowever, Kronecker-

based algorithms introduced data dependency and lochéitymiust be analyzed
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prior to the data loading and execution. This is requirechbee these solutions
are iterative and their convergence control demands ettpbynchronizing tasks.

Da Cunha and Hopkins [25] considered the basic GMRES iteratitmthe
Arnoldi process. Nevertheless, the work was based on Ma@twins with the
state space explosion problem since it makes it difficulfiodeling and solving
on parallel systems. Erhel [26] proposed a parallel impleaten of Arnoldi and
GMRES methods using the Single Program Multiple Data (SPMDy@amming
style. Gimenez et al. [27] developed a parallel implemémator the Power
Method for solving linear equations obtained through Markihains models.

Tadonki and Philippe [28] have proposed a recursive ver&iothe parallel
multiplication of a vector by a product of matrices, in c@strto our approach
that multiplies a vector by a descriptor. In the context aftaauous time Markov
chains, Kemper [29] has modified the Kronecker represemtdtir a parallel
matrix-vector multiplication. His implementation, basad POSIX threads, uses
a fast multiplication scheme with no write conflicts on iteva vectors.

Deavours and Sanders [30] devised a method to efficientig stdlarkovian
transition matrix on disk, thus overlapping computatiod data transferring on a
standard workstation. They use two processes that comateni@a shared mem-
ory, efficiently utilizing the system disk and CPU. Knottehitzad Harrison [31]
proposed a distributed software architecture to embed #taxyector multipli-
cation solution algorithm, allowing two processes per caral achieving good
speed-ups for models up to 50 million states. Bell and Havei{B&] presented
distributed disk-based algorithms for matrix-vector nplitations in the context
of CSL model checking-based performance. Results illusthateffectiveness of

the approach proposed for models with several hundredsliddmstates running
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on a cluster with 26 dual-processor nodes.

Kwiatkowska et al. [33] mixed parallel and symbolic techreg to tackle
the state space explosion problem proposing an out-of-atgion to matrix-
vector multiplication for models near 216 million statesin@e et al. [34] in-
vestigated hypergraph partitioning schemes to minimigeriprocesses commu-
nication when applying a uniformization-based techniguedrive response time
densities for large models. The authors showed resultséoe@lized Stochastic
Petri Nets [35] and flat representations of Markov chains.

Blom et al. [36] used a bisimulation approach to considertsietic model
variants to enable the model checking of smaller and prdisbequivalent mod-
els. Bisimulation techniques usually allow substantial gledduction in terms of
state space size, however, the gains in storage affecintieetdi solve the models.
The authors present a distributed signature-based digofir the bisimulation
guotient and demonstrate the feasibility for a broad viamedf case studies.

Previous works have addressed iterative methods, distdl@sproaches, bisim-
ulation, model checking, all for matrix-vector multiplteans in parallel (or dis-
tributed) settings. Our approach is to consider VDP instéanatrix-vector prod-
ucts focusing on the speed-up of the overall process bytipartig descriptors
into more manageable and scalable tasks. Moreover, we viigaldo mention
that we have studied the trade-offs between commonly usdel téEhniques such
as Shuffle and Split algorithms. To the best of the authoreikedge, the most
closely related work concerns Kemper [29], however, th@@utransformed the
Kronecker representation into a flat representation thahohcurs in high mem-
ory costs. The direction taken in the present work diffeosfiKemper’s research

as we are working with Kronecker algebra operations. Usingnkcker storage
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features combined with parallel mechanisms allows fasikitisns even for the

models where some extra memory is used (the Split algoriticase).

6.2. OpenMP-based programs

OpenMP (Open Multi-Processing) [8] is an API for shared mgnmaulti-
processing programming. Since then, several researchdrsl@velopers have
been evaluating the performance of OpenMP-based applitsath comparison
with other APIs, especially MPI. For example, Krawezik angy@allo [37] com-
pare MPI and three OpenMP programming styles using a sulbsbieodNAS
benchmark along with two data set sizes and shared memocggsors. The
authors concluded that OpenMP provides competitive padioce compared to
MPI with the price of a strong programming effort. Madl et al. [38] have also
compared MPI and OpenMP and concluded that data localitpesod the main
obstacle for obtaining good performance in OpenMP apyptinat

Mattson [39] developed a framework to evaluate OpenMP denisig its main
features and possible enhancements for the API. One of miarkes is that com-
pared to other parallel programming APIs, constructs inr®ffe are the most
part semantically neutral compiler directives. Thereftihe semantics of a par-
allel and sequential program are equivalent. And this isafrtee main reasons
why several programs have been developed in OpenMP.

Several software systems have been then developed in Opantfiheir ef-
ficiency evaluated. Bungartz et al. [40] implemented an Opefddsed Black-
Scholes solver, which is used for option pricing, and evaidiat on multi-core
architectures. Their experiments mainly considered iiffenumber of threads.
Terboven et al. [41] presented implementation choicesf@penMP-based Navier-

Stokes Solver and also mainly varied the number of threatlsein experiments.
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Maris and Wannamaker [42] described modifications made O adgnetotel-
luric inversion program to run efficiently in parallel on a ltnecore desktop PC.
Their experiments focused on varying the loop frequency ranmdber of cores
used by their program. Different from these existing prgecur work provides a
deeper analysis considering different number of threagshead, memory affin-

ity, and task mapping policies.

7. Concluding Remarks

This paper presented three parallel implementations ofSihlé algorithm
for handling Kronecker descriptors. Our implementatiorsendeveloped using
OpenMP for shared-memory architectures. We performedsixie experiments
using four types of models with three input sizes each. Wdyaed speed-up,
synchronization and scheduling overheads, task mappihggs) and memory
affinity. Our experiments demonstrated a speed-up valugpdbeight using
eight cores with Intel Hyper-Threading technology. We obsé that the choice
of the implementation depends on the input size and the nub@ehcteristics to
be evaluated. Therefore, as the solvers are iterativecgtigins, by executing a
few iterations of the three implementations it is possibl@titomatically select
the best one to solve and analyze models.

The differences of the three implementations lay in the sa$leduling strat-
egy and task granularity. Two mplementations are based emKdp standard and
the third one is based on manual static task scheduling.néambdel consisting
of homogeneous tasks, the dynamic scheduling strategy fisgrgrained tasks is
more suitable than the static one. The reason is that, fér swclel, the schedul-

ing overhead using the clausehedule(dynamic,1$ negligible due to the small
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number of tasks. Moreover, for the model composed of fewstaskhe coarse

granularity, the scalability of the parallel execution @ as good as in the fine
granularity of the same model. This happens because theot &éough work to

be distributed among the processors in order to scale it up.

For the models composed of a very large number of tasks, tbdesad im-
posed by the clausschedule(dynamic,roduces negative effects in the speed-
up. To minimize the overhead effect, the dynamic schedudargbe changed to
the guided one. However, guided scheduling can cause lobdlamce without
applying any task ordering strategy. Considering that thdegliclause initially
distributes large chunks of work, it is important to sortkkeby ascending order
of their sizes to improve load balance and hence reduce tardime.

Another source of expected overhead is the number of atopecations.
However, from our experiments, we observed that there ignoog relation be-
tween the number of atomic operations and the overhead mddnsthe use of the
atomic construct from OpenMP. Furthermore, applying aarlaaving memory
allocation policy improves the memory access performand¢dMA machines,
mainly in applications that cannot take advantage ofitsetouchtechnique. For
example, applications which use dynamic scheduling gjredei.e., the memory
access pattern becomes irregular. Regarding code optiarizats future work,
we will perform a deeper analysis of memory and cache andntipadt of the
architecture (i.e., NUMA based systems, different cachel$e and Simultaneous
Multithreading technology), and other data partitionimgions.

The implementations presented in this paper achieve higbrpgance results,
which have a direct impact on the solution of large Markoviamdels based on

Kronecker representations. The discussions presentectbald also be used for
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researches working in similar programming models. In aoldjthis paper is an-

other example of the successful use of OpenMP for solvirensific applications.
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