
Performance Evaluation of OpenMP-based Algorithms
for Handling Kronecker Descriptors

Antonio M. Lima, Marco A. S. Netto, Thais Webber,
Ricardo M. Czekster, Cesar A. F. De Rose, Paulo Fernandes

Catholic University of Rio Grande do Sul (PUCRS) – Faculty ofInformatics (FACIN)
Av. Ipiranga, 6681 – Porto Alegre – 90619-900 – Brazil

Abstract

Numerical analysis of Markovian models is relevant for performance evaluation

and probabilistic analysis of systems’ behavior from several fields in science and

engineering. These models can be represented in a compact fashion using Kro-

necker algebra. The Vector-Descriptor Product (VDP) is thekey operation to ob-

tain stationary and transient solutions of models represented by Kronecker-based

descriptors. VDP algorithms are usually CPU intensive, requiring alternatives

such as data partitioning to produce results in less time. This paper introduces a

set of parallel implementations of a hybrid algorithm for handling descriptors and

a detailed performance analysis on four real Markovian models. The implemen-

tations are based on different scheduling strategies usingOpenMP and existing

techniques of static and dynamic load balancing, along withdata partitioning pre-

sented in the literature. The performance evaluation studycontains analysis of

speed-up, synchronization and scheduling overheads, taskmapping policies, and

memory affinity. The results presented here provide insights on different imple-

mentation choices for an application on shared-memory systems and how this

application benefited from this architecture.

1

Keywords: Parallel Algorithms, OpenMP, NUMA Machines, Markovian

Models, Kronecker Descriptors, Performance Evaluation, Scientific Computing.

1. Introduction

Markovian modeling is an important tool to understand problems from sev-

eral fields,e.g., Bioinformatics, Economics, Engineering,and more specifically to

predict the behavior in the Computer Systems domain. These systems normally

require large amounts of memory and processing power for a comprehensive de-

scription and fast solutions. Kronecker descriptors [1] can minimize memory

consumption as they are compact structures to represent very large Markovian

systems. A myriad of structured formalisms that use Kronecker (tensor) alge-

bra as a compact representation is available to the researchcommunity [2], e.g.,

Stochastic Petri Nets (SPN), Process Algebra (PEPA), and Stochastic Automata

Networks (SAN), among others.

There are many numerical alternatives to extract results from analytical mod-

els such as simulation and iterative numerical methods. As Kronecker descriptors

are represented in a different structure than traditional Markovian systems new

solution algorithms had to be designed. Specialized numerical algorithms were

then developed throughout the years to provide support for the stationary solu-

tion of models. In particular, the most effective solutionsare obtained by Vector-

Descriptor Product (VDP) algorithms, such asShuffle[3] andSplit [4] algorithms.

The main difference between these algorithms resides in therequired additional

memory and computational cost in terms of floating-point multiplications.

In this sense, VDP is the key operation to achieve numerical solution for sys-

tems represented by descriptors. The VDP operation multiplies a probability vec-

2

tor by a descriptor, which is composed of tensor product terms [3]. Each term

corresponds to a set of small matrices and tensor product operators. The numeri-

cal solution is usually achieved by several VDP iterations until convergence, and

the processing time of each product is proportional to the descriptor complexity,

i.e. the number, size, and sparsity of tensor product terms.Among several solution

methods [5, 1], we have applied the Power method as an exampleof iterative pro-

cess containing VDP calls, since to test the performance of the Split algorithm we

are mainly interested in the VPD procedure alone, rather than in analyzing how

quickly the overall method will converge. Other methods such as Arnoldi and

GMRES can be also composed of iterative VDP calls, but these other methods

may be unaffordable for large models, since they demand additional probability

vectors that may not fit into the available memory.

Algorithms’ evolution, processing power and storage of thecurrent computing

resources have enabled the evaluation of large Markovian models. Although this

resource capability is very powerful to handle the system’scomplexity, it is still

not enough to handle several iterations in feasible time. Therefore, as most of the

current machines are based on multi-core technology, the development of parallel

solutions to accelerate VDP operations becomes essential.Czekster et al. [6] have

developed a parallel solution of Kronecker Descriptors considering data partition-

ing strategies for the Split algorithm. However, this first parallel approach was

only based on MPI [7] primitives and presented low scalability on a distributed

memory computing platform.

This paper introduces a set of parallel implementations forshared-memory

machines of the Split algorithm running inside Power methoditerations, and a

detailed performance analysis on four real Markovian models. These implemen-

3

tations are based on different scheduling strategies usingOpenMP (Open Multi-

Processing) [8] and existing techniques of static and dynamic load balancing,

along with data partitioning available in the literature [9, 10]. The performance

evaluation study contains analysis of speed-up, synchronization and scheduling

overheads, task mapping policies, and memory affinity. The results presented

here provide insights on different implementation choicesfor an application on

shared-memory systems and how this application benefited from this architecture.

2. Solving Structured Markovian Models

Markovian models are widely used in the analysis of computersystem perfor-

mance, reliability, availability, and dependability [1].Although, in general, when

a more complex behavior needs to be represented by a Markov chain, one can

take advantage of structured Markovian formalisms [2]. Kronecker (tensor) alge-

bra [11, 12] operators are employed to represent the underlying Markov chain [3]

of structured models in a compact format. A system represented in a tensor struc-

ture, i.e., the model, is also referred to in the literature as Markovian descriptor.

Descriptors are composed of a set of tensor product terms [12] representing

the dependent entity behavior (each one with its own states and transitions), and a

tensor sum gathering independent state transitions [3] in each entity. These tensor

operations are composed of low dimensional matrices, sometimes highly sparse,

responsible for conveying the transition system being represented, e.g., using a

high level formalism such as Stochastic Automata Networks (SAN) [13, 3].

Figure 1 depicts the two options of the mapping process of large Markovian

models in a structured description that undeniably reducesthe needs of memory,

avoiding the storage of one single, and usually large, flat matrix. Remark that the

4

set of tensor product terms composed of smaller matrices combined through Kro-

necker operators, is equivalent to the underlying Markov chain transition matrix

that is never stored in memory.

Figure 1: Mapping process of large Markovian models to a compact representation.

Among several structured formalisms present in the literature [2], those using

a tensor structure are dependent of specialized numerical solutions. These solu-

tions are concerned in multiplying pieces of a probability vector (as large as the

model state space) by a set of matrices that composes the descriptor. It is well

known that inside product state spaces there are sets of unreachable states, i.e.,

some approaches are already proposed to reduce the size of the probability vector

to contain only references to the reachable state space. However, some models

present characteristics enabling the product state space to be almost comparable

to the reachable state space, and particularly for these models, the solution need

to be calculated with vectors sized as the product state space, independent of the

compact storage of the transition matrix. Nevertheless, itis a fact that operating

large probability vectors combined with sets of different sparse matrices directly

5

influences the total time spent on performing floating-pointmultiplications.

Despite the state space explosion problem, often responsible for the growth in

requirements to store the solution vector, the basic idea for numerically solving

models represented by tensor structures is to deal efficiently with vector multi-

plications by blocks of non-zero elements inside the descriptor. This operation is

calledVector-Descriptor Product(VDP). There are two known VDP algorithms:

the Shuffle algorithm [3] and the recent Split method [4, 14].

2.1. Shuffle Algorithm

The Shuffle algorithm implements the product of a probability vector by the

descriptor taking advantage of tensor algebra properties to conduct the overall

multiplication process [11, 3]. A probability vector is successively multiplied by

each tensor product applying the tensor algebra property for the decomposition

of a tensor product term in a product of normal factors [3]. This decomposition

allows the treatment of each matrix in a tensor product term in a way that sub-

vectors composed of shuffled elements (from the original vector) are used in the

multiplication. Briefly explaining, the property consists in breaking, e.g., decom-

posing, a tensor product term into a product of new tensor product terms (the

normal factors), each one with one single matrix and every other matrix as an

Identity matrix. For more information on the application ofKronecker algebra

properties, please refer to Fernandes et al. [3]. Therefore, the Shuffle algorithm

does not require extra memory to store other matrices or extra large vectors.

However, one of the drawbacks of the Shuffle algorithm is its complexity in

accessing descriptors’ data, since it is stored in a compactform. Note that de-

scriptors are relatively complex to operate due to the tensor structure despite their

advantage in terms of memory efficiency [3]. Additionally, because of the decom-

6

position in normal factors executed for every tensor product term, the numerical

computations depend on one another to complete the multiplications. The depen-

dency established among normal factors makes it extremely hard to devise means

to parallelize the multiplication of tensor product terms without compromise per-

formance. The problems aforementioned have motivated the development of a

hybrid numerical algorithm handling the trade-off to balance memory usage, and

maximizing efficiency in terms of execution time.

2.2. Split Algorithm

The Split algorithm [4, 15] is a hybrid method that executes matrix permuta-

tions and aggregations to reduce the cost in floating point multiplications inside it-

erative methods. Moreover, recent developments [16, 14] have proposed a heuris-

tic, flexible enough to perform fast iterations, for optimizing the execution time of

the VDP without impairing the memory, i.e., the algorithm can rearrange matri-

ces in tensor product terms with different strategies, reorganizing the descriptor to

balance data storage and numerical operations. On its essence, the Split algorithm

deals with the generation of additive unitary normal factors, removing the Shuffle

algorithm’s constraint related to the sequential computation of each normal fac-

tor. In other words, Split does not rely on breaking the tensor product term into

dependable normal factors; on the contrary, Split generates independent normal

factors, due to the additive decomposition property. This characteristic implies

that Split can be more suitable for parallelization effortsthan Shuffle due to the

granularity allowed for tasks.

Figure 2 illustrates the Split algorithm handling Kronecker based descriptors

by gathering the set of tensor product terms, i.e., selecting matrices in a tensor

product term based on acut-parameterσ which separates the tensor product term

7

in two different sets of matrices [15]. The set of matrices atthe left side ofσ

(i.e., matrices to combine) is treated in a sparse-like manner, where the non-zero

elements are combined through ordinary multiplications. Each combination of el-

ements in this part is calledAdditive Unitary Normal Factor(AUNF). An AUNF

is represented by a scalar, and its coordinates (i,j) in the matrix. From a memory

efficiency point of view all AUNFs can be stored in a single sparse matrix. The

set of matrices at the right side ofσ is composed of the remaining matrices of

the tensor product term. These matrices are treated with shuffling operations de-

pending on the heuristic adopted, maintaining the originaltensor structure (named

shuffle-like part).

Figure 2: Set of tensor product terms manipulated by the Split algorithm to generate AUNF sets.

Different heuristics [4, 15, 14] could be used to properly select and combine

matrices of tensor products on each side ofσ to speed-up execution time. In

this paper we apply the heuristic proposed for Split [14], profiting from the well-

known identities optimization[3]. According to this heuristic, only the identity

8

matrices are placed at right ofσ to skip the whole shuffle-part, operating only

in the combined matrices. The multiplication is simply performed considering

the product of a probability vector (state space sized) by a set of AUNFs. This

multiplication process is repeated for all tensor product terms in a descriptor for

each step of an iterative numerical method (e.g., Power method, Arnoldi).

Observe that in Figure 2, the sparse-like part is converted in a new sparse ma-

trix, with its dimension related to the tensor combination of the matrices at left of

σ. This matrix contains the scalars that must be multiplied bythe probability vec-

tor. Moreover, the matrices at the right side ofσ are omitted in the Split algorithm

data abstraction level, because using the basic heuristic in this case implicates just

in more multiplications of scalars (generated in the sparse-like part), as the size of

the shuffle-like part (the product of the matrices order).

The operation flow of a sequential implementation of the iterative numerical

method using the Split algorithm is described as follows. First, a model descrip-

tor (the set of tensor product terms) is loaded to memory. Allinitial probability

vector positions are initialized (of size determined by thecardinality of the state

space). Then, for all tensor product terms, all AUNFs are precomputed and stored

in a list. The Split algorithm is executed using this list to access and multiply

vector positions. Once Split is executed for a single iteration, the Power method

is called and tests if the model has reached convergence observing the probability

vectors. If not, the Split algorithm is repeatedly executeduntil stationary regime

is achieved. The results are present in the final probabilityvector containing the

steady state information for the model.

The execution of the iterative numerical method in an efficient manner is de-

pendent on several factors: the size of the analyzed model, the number of matrices

9

represented in the tensor structure, the computational cost related to the sparsity

of these matrices, and the behavior adopted by Split settingacut-parameterσ for

each tensor product term. Details on VDP methods can be foundin the litera-

ture [3, 4, 15, 14].

2.3. Parallel Implementation Issues

The complexity in solving Kronecker based models is associated with the state

space size and the issues related to the practical application of specialized iterative

numerical methods. As the AUNFs can be divided in self-contained groups for

computation using the Split algorithm, it is a natural alternative to decompose

descriptors within parallel environments. However, from adistributed computing

point of view, it is important to focus the study on performance related issues

such as the memory and computation bounds, and mainly on the complexity of

operations involved in each step of the algorithm.

We have studied how the algorithms can profit from parallel algorithm ver-

sions and some observations have emerged. Shuffle is memory efficient but de-

mands several numerical intermediary calculations to workproperly. Split stores

AUNFs and precomputes positions that it will need afterwards making it not so

memory efficient but faster when solving Kronecker descriptors. Split also com-

bines the strengths of Shuffle and sparse storage techniques, using a clever mech-

anism to address several positions within the Markovian matrices. One could say

that Split is more prone to have similar access patterns in memory hierarchies

than Shuffle. All the precomputations that Split performs only once in the overall

method are used throughout the VDP procedure. However, due to its memory

efficiency, Shuffle always computes positions without saving auxiliary structures.

There are two main approaches to implement parallel VDP algorithms: one

10

based on message passing, for clusters, and another based onshared-memory,

for multi-core machines. For both approaches, the main challenge is to define

the most suitable task set and size to assign to each processor. For clusters, this

is challenging since gathering tasks for reducing communication overhead may

cause a poor load balance. For multi-core machines, the challenge of the task

assigning comes from properly defining data locality and thread load balancing.

For the specific case of this numerical algorithm, a potentially large vector is to be

manipulated and thus these parallel processing issues mustbe taken into account.

3. Markovian Model Examples

This section describes four families of stochastic automata network models

varying the product state space sizes, i.e., the models are classified by their prob-

ability vector sizes (Small, Medium, andLarge). We chose these models because

they are representative cases with heterogeneous characteristics, allowing us to

evaluate our implementations. We show different models’ characteristics, such

as state space size, number of local and synchronizing matrices (composing re-

spectively a tensor sum term and the tensor product terms), memory to store the

descriptor (in Kb), quantity and the memory to store all AUNFs (generated from

all tensor product terms), total time used by each iteration(and the total number

of iterations), and sequential execution time for solution. Note that the number of

iterations of each model solution is only related to the events rate values, having

no correlation with the state space size.

Additionally, for each model, we indicate that a model can beextended (for

parallel tests execution, refer to Section 5.2) using the following variables: the

number of automata and the number of synchronizing events. The memory sav-

11

ings can be estimated looking at the number of matrices composing the descriptor

and their number of non-zero elements (refer to Section 2.2 for more information

as to how generate AUNFs from nonzero combinations). With all these param-

eters and using each indicated simplified formula, it is possible to calculate the

number of tensor product terms in a descriptor for a given number of automata

and the related number of events.

3.1. Resource Sharing (RS) model

The classical SAN model for resource sharing [17], whereP is the number

of processes (descriptor contains squared matrices with two rows, i.e., automata

with two states:idle andoccupied) andR is the number of resources (squared

matrix with R+1 rows, indicating an automaton in which the states are from0 to

R resources occupied).

Figure 3 graphically shows the SAN model with its synchronizing events (con-

sideringi = 1..P): eventeai (acquiring a resource) and eventeri (releasing a

resource). The model descriptor presents generally(2P) synchronizing events,

totaling(4P) tensor products withP+1 matrices.

...

...

... ...

erP

er1

erP

er1

erP

er1

ea1

eaP

ea1

eaP

ea1

eaP

A(1) A(P)

eaP

s

u

erPea1

s

u

er1 0 1 R

A(P+1) Type Event Rate
syn ea1 λ1

syn ea2 λ2
...

syn eaP λP

syn er1 µ1

syn er2 µ2
...

syn erP µP

Figure 3: RS Stochastic Automata Network model.

Note that the diagonal adjustment of the event rates are represented in2P

tensor product terms and stored in a separated vector to be multiplied, which is

12

an optimization in VDP methods [3], then there are2P tensor products remaining

to multiply using Split. The state space is given by[2P × (R+1)] states, which

is the size of the input/output probability vector to be calculated in the numerical

solution. Table 1 illustrates the RS model’s variations and characteristics.

Table 1: Resource Sharing (RS) model configurations.

Characteristics (RS)
Small Medium Large

P=22; R=4; P=22; R=16; P=24; R=8;

State Space (vector size) 20,971,520 71,303,168 150,994,944
Total Local Matrices (tensor sum) none none none
Total Terms (tensor products for Split) 44 44 48
Normalized Descriptor size (Kb) 10,267 34,844 73,763
Total AUNFs 176 704 384
Split Extra memory for AUNFs (Kb) ≈2.75 ≈11.00 ≈6.00
Total multiplications (VDP) 369,098,752 1,476,395,008 3,221,225,472
Time per iteration (s) ≈12 ≈47 ≈105
Power methoditerations 30 131 57
Total sequential time (s) ≈350 ≈6,197 ≈5,997

3.2. Software Development Team (SDT) model

This section shows a model (Figure 4) that depicts a softwaredevelopment

team (SDT) communication pattern with a main team, called Central team, in a

globally distributed project [18], to analyze the probabilities of waiting periods to

solve project issues by different participants.

The model is composed of a central team with two-state automata represent-

ing its availability for cooperation withN participants:Availability automaton

(statesA andU , i.e.,AvailableandUnavailablerespectively, related to time-zone

overlap in a typical workday), andActivitiesautomaton (with statesM andC, i.e.,

ManagementandCollaboration). The model also contains a SDT composed ofN

13

C S
U

A

Availability

ua

s1

sN

...
co1

coN

...

W

C S

W

PN

coN

sfN

eN

. . .

Type Event Rate
loc a λa

loc u λu

loc e1...eN µ1...µN

loc sf1...sfN σ1...σN

syn co1...coN α1...αN

syn s1...sN β1...βN

M

C

Activities P1

co1

sf1

e1
s1 sN

Figure 4: SDT Stochastic Automata Network model.

three-state automata as follows:W state means the participant isworking; S state

represents the participantseeking for a specific information; andC state means

the participant is collaborating to solve technical questions.

Figure 4 illustrates the stochastic automata network corresponding to this sce-

nario. The local behavior of a team member describes that, when members are

actually working, they can stop for a while (evente) seeking a solution on their

own (eventsf), or preferably move to cooperate with the central team (event co),

returning to the working state after that (events). The model descriptor presents

generally(2×N) synchronizing events, totaling(4×N) tensor products with2+N

matrices. Note that local events are stored together in a tensor sum term.(2×N)

tensor terms are treated using Split. The state space is given by [2 × 2 × (3N)]

states. Table 2 illustrates the SDT model’s variations and characteristics. Note that

we waited for the entire execution of the sequential programs to find out the total

number of iterations. Also, note that the number of iterations for the sequential

and parallel program is the same as we paralelized the iterations themselves.

3.3. Alternate Service Pattern (ASP) model

This section shows a model (Figure 5) for open queueing networks [12] having

four queues (A(1), A(2), A(3), A(4)) with finite capacitiesK1, K2, K3, K4.

14

Table 2: Software Development Team (SDT) model configurations.

Characteristics (SDT) Small (N=14) Medium (N=15) Large (N=16)

State Space (vector) 19,131,876 57,395,628 172,186,884
Total Local Matrices (tensor sum) 15 16 17
Total Terms (tensor products for Split) 28 30 32
Normalized Descriptor size (Kb) 9,351 28,036 84,088
Total AUNFs 72 77 82
Split Extra memory for AUNFs (Kb) ≈1.13 ≈1.21 ≈1.29
Total multiplications (VDP) 376,260,228 1,205,308,188 3,845,507,076
Time per iteration (s) ≈8 ≈26 ≈86
Power methoditerations 78,045 71,057 75,259
Total sequential time (s) ≈633,304 ≈1,849,428 ≈ 6,250,034

e13

e13

A(1)

e1

e1

...

A(2)

e2

e2

...

e23

e23

A(3)

e13
e23

e13
e23

...

A(4)

...

e4

e4

e23

e34(1)
e34(2)

e34(1)
e34(2)

e34(1)
e34(2)

e34(1)
e34(2)

0

K1

0

K2 K4

00

K3

A(5)

e34(1)(π11)

e34(2)(π22)

P1

P2

e 3
4(

2)
(π

21
)

e34(1)(π12)

Type Event Rate
loc e1 λ1

loc e2 λ2

syn e13 µ1

syn e23 µ2

syn e34(1) µ31

syn e34(2) µ32

syn e4 µ4

Figure 5: ASP Stochastic Automata Network model.

In the routing pattern of customers they arrive inA(1) andA(2) with constant

ratesλ1 and λ2, respectively. Customers may leave fromA(1) to A(3), if and

only if there is room in that queue (blocking behavior), whereas customers may

leave fromA(2) to A(3) whether there is room, or leave the model otherwise (loss

behavior). Customers may also leave fromA(3) to A(4) with blocking behavior.

WhileA(1),A(2) andA(4) have standard (single) service behavior, i.e., considering

the same average service rate for all customers (µ1, µ2, andµ4, respectively),

queueA(3) has an Alternate Service Pattern (ASP) behavior. The service rate for

15

this queue varies according toP different service patterns (µ31 . . . µ3P). A(3) can

exchange its service pattern simultaneously with the end ofservice of a customer.

Therefore, when a customer is served by the service patternPi, automatonA(3)

can remain serving the next customer in the same pattern withprobabilityπii, or it

can alternate to a different service patternPj, with probabilityπij (for all service

patternsPi :
∑P

j=1 Pij = 1).

Local eventse1 ande2 represent the arrival in queuesA(1) andA(2) respec-

tively, and local evente4 represents the departure fromA(4). Synchronizing events

e13 ande34 represent the routing between queuesA(1) toA(3) andA(3) toA(4) re-

spectively, and synchronizing evente23 represents both the routing fromA(2) to

A(3), and the departure fromA(2) due to lack of room inA(3) (loss).

Note that the extension to a higher number of service patterns will correspond

to the addition of more local states to automatonA(5), which will always haveP

local states. Evente34(1) ande34(2) have constant ratesµ31 andµ32 respectively.

Moreover, a model withP service patterns will containP synchronizing events

e34(1) . . . e34(P) with rates given byµ31 . . . µ3P . The model descriptor presents

generally(2 + P) synchronizing events, totaling(4 + 2P) tensor products with

five matrices (four matrices representing the queues and onematrix representing

the service patterns).(2 + P) tensor terms are treated using Split. Note that

local events are stored together in a tensor sum term. The state space is given by

[K1 × K2 × K3 × K4 × P] states. Table 3 illustrates the ASP model’s variations.

3.4. Master-slave architecture (MSA) model

This section describes a model for an evaluation of the master-slave parallel

implementation of the Propagation algorithm [19] considering asynchronous com-

munication. The model in Figure 6 is composed of oneMasterautomaton of three

16

Table 3: Alternate Service Pattern (ASP) model configurations.

Characteristics (ASP) Small (P=5) Medium (P=12) Large (P=16)

State Space (vector size) 33,826,005 69,177,612 126,247,696
Total Local Matrices (tensor sum) 3 3 3
Total Terms (tensor products for Split) 7 14 18
Normalized Descriptor size (Kb) 16,517 33,780 61,647
Total AUNFs 67,700 336,576 697,840
Split Extra memory for AUNFs (Kb) ≈1,057.82 ≈5,259.00 ≈10,903.75
Total multiplications (VDP) 327,726,000 1,134,040,320 2,561,448,448
Time per iteration (s) ≈12 ≈48 ≈110
Power methoditerations 1,105 987 1,014
Total sequential time (s) ≈13,332 ≈47,089 ≈111,336

states (transmitting, receivingandidle), S slaves (automata) with three states each

(idle, processingandtransmitting), and one largeBufferof K+1 positions.

Rx

ITx

Tx

up

s1..sN

down

c1..cN

c0 Pr

Tx

I

down

pi

si

up

down
ri(1 − π)

down

ri(π)

Slave(i=1..N)Master

down

r1..rN r1..rN

ci
down

down

Buffer

K − 1

r1..rN

ci ci

0

K

down

Type Event Rate
syn up λ

syn down µ

syn ci σ

syn si δ

syn ri α

loc pi β

. . .

Figure 6: MSA Stochastic Automata Network model.

TheMasterautomaton is responsible for the distribution of tasks to slaves and

for the analysis of the results evaluated by them. A synchronizing event named

17

up sends the initial tasks to all slaves, and a synchronizing eventdownends one

execution of an application. The occurrence of the eventup indicates that all au-

tomata must change their actual state for the initial one. Synchronizing eventsi

represents the sending of a new task to thei-th slave. AutomatonMaster con-

sumes theBuffercontent through the synchronizing eventc. Finally, Slave(i) au-

tomaton finishes a task through the occurrence of local eventpi. Synchronizing

eventri represents the reception of completed tasks by theBuffer. The model de-

scriptor presents(3S+3) synchronizing events, in a total of(6S+6) tensor product

terms. Note that local events are stored together in a tensorsum term. (3S+3)

tensor terms are treated using Split. The state space is given by [3(S+1) × (K+1)].

Table 4 illustrates the MSA model’s variations and characteristics.

Table 4: Master-slave Architecture (MSA) model configurations.

Characteristics (MSA)
Small Medium Large

S=10; K=256; S=12; K=70; S=14; K=14;

State Space (vector) 45,526,779 113,196,933 215,233,605
Total Local Matrices (tensor sum) 10 12 14
Total Terms (tensor products for Split) 33 39 45
Normalized Descriptor size (Kb) 22,241 55,283 105,109
Total AUNFs 15,445,438 38,021,576 71,974,528
Split Extra memory for AUNFs (Kb) ≈241,334.97 ≈594,087.13 ≈1,124,602.00
Total Multiplications (VDP) 570,498,594 1,683,360,438 3,598,616,402
Time per iteration (s) ≈15 ≈43 ≈98
Power methoditerations 10,160 3,433 1,986
Total sequential time (s) ≈152,211 ≈149,070 ≈194,628

4. OpenMP-based Split Algorithm

To achieve parallelism in the VDP method, we have to considerdescriptor par-

titioning, i.e., use of techniques of data partitioning to exploit parallelism. This

18

section presents data partitioning strategies for the VDP with the Split algorithm,

describes the computational costs of the tasks generated oneach partitioning strat-

egy, and the OpenMP-based Split implementations.

4.1. Data Partitioning Strategies

There are two ways to derive concurrency in the VDP method with the Split

algorithm: partitioning per tensor product term and partitioning per AUNF. This

section presents these two approaches, describing the number of tasks and com-

putational costs involved on each one.

4.1.1. Partitioning per tensor product term

One partitioning approach is based on the total number of Kronecker tensor

product terms, i.e., a set of tensor terms that form a bag-of-tasks to be distributed

among processors. The computational cost in multiplications related to each term

is given by
(

∏σj

i=1 nz
(i)
j

)(

∏N

i=σj+1 n
(i)
j

)

, wherenz
(i)
j corresponds to the total

number of non-zero elements in thei-th matrix of the termj and
∏N

i=σj+1 n
(i)
j is

the size of the vector to be multiplied. The total number of tasks to be performed

in parallel depends on the model characteristics, i.e., thenumber of tensor product

terms in the descriptor. Remark that in the left side of Figure2, we have a set of

Kronecker products (tensor product terms). Considering a partitioning approach

per tensor product term, each tensor product term composingthe descriptor is con-

sidered as a task to be assigned to one processor. Thus, the processor executes all

multiplications related to this specific tensor product term. For example, for the

models RS, SDT, ASP and MSA we have the total number of tensor product terms

given by:2P , 2N , 2+P , and3S+3 (Section 3), respectively. The total number of

tensor product terms refer to the number of tasks in this approach.

19

As presented, the cost of each tensor product term is defined mainly by the

number of nonzero elements and the value of the cut-parameter σ. In this ap-

proach, if we have tasks with very different costs and in limited number, it can be

difficult to achieve an efficient load balance and scalability of the parallel solution.

4.1.2. Partitioning per AUNF

A different partitioning approach is to distribute the computation of each AUNF,

or a set of them, to each processor. In the Split algorithm, every tensor product

term is subdivided in smaller tasks corresponding to AUNFs.All the K AUNFs

of the j-th term have the same cost, and if summed, the amount is equalto the

total cost of the term. The multiplication of each AUNF by a slice of probability

vector represents an independent task, after then the result is accumulated in a

probability vector. The size of this slice of vector is givenby
∏N

i=σj+1 n
(i)
j . The

total number of AUNFs per termj is given by the equationKj =
∏σj

i=1 nz
(i)
j .

This approach is possible because every term has at least oneAUNF. Observing

the right side of Figure 2, we have a set of AUNFs resulting from matrices combi-

nations in a tensor product term. Considering a partitioningapproach per AUNF,

each additive unitary normal factor (AUNF) composing the descriptor is consid-

ered an independent task to be assigned to a given processor.So, the processor

will execute just the multiplications related to this AUNF.Note that each tensor

product term can generateKj AUNFs, i.e., independentKj tasks.

In comparison to the previous data partitioning approach, we have assembled

a larger number of tasks with lower computational costs, thus enabling better load

balance and scalability.

20

4.2. Parallel Implementations

We have developed three parallel implementations of the Split algorithm for

shared-memory machines using the OpenMP API and the C++ language. The

implementations differ in data partitioning and task scheduling strategies.

At the beginning of each iteration of the numerical method, aparallel region

is created. Split is a loop-based algorithm that iterates among the tensor product

terms and AUNFs. Thus, the parallelization is accomplishedthrough the distri-

bution of loop iterations across the threads. The probability vectorπ is a shared

variable that is updated at the end of each task. Therefore, this variable access

must be protected to avoid data race conditions. For enabling multiple threads to

update the shared vectorπ, we have used theatomicconstruct that is an efficient

alternative to thecritical construct [8].

4.2.1. OpenMP-based scheduling

The first two parallel implementations use thefor work-sharing construct from

OpenMP. They also use thescheduleclause, which specifies how the iterations of

the loop are assigned to the threads. We choose thedynamicschedule type with

task granularity equals to one. In this scheduling strategy, one iteration at a time

is assigned to each thread, until there are no more iterations available [8]. The

dynamicschedule is more suitable to unbalanced workloads and very useful when

the computational cost of the tasks is unknown. Additionally, the chosen task

granularity is more flexible and generic concerning load balancing and scalability

than larger ones. On the other hand, by using a generic setting we can see more

clearly the differences among different input models.

Algorithm 1 presents the first parallel implementation thatuses partitioning

per tensor product term. A parallel region is created with the directive#pragma

21

omp parallel(line 1) and the loop is parallelized via thefor construct (line 2).

In this implementation, there areT tensor product terms to be distributed among

the threads following a dynamic scheduling strategy. Usingthe private clause,

we specify that each thread has its own copy of variablesj, k, and vectorυ. In

addition, the shared variables are the listA of AUNFs and the global state vectorπ.

The update ofπ is performed in the inner loop (line 7), where we have the needed

information to compute the indices ofπ to be updated. As multiple threads may

simultaneously write at the same positions ofπ, we treat the region (line 7) with

theatomicconstruct. The end of the parallel block occurs after line 7.

Algorithm 1: TP-Dyn - Partitioning per termj

#pragma omp parallel for private(j,k,υ) schedule(dynamic,1)1

for j ∈ [1 . . . T] do2

for k ∈ [1 . . .Kj] do3

υ = A[j].scalar[k] × π04

. . .5

#pragma omp atomic6

π += υ7

Algorithm 2: AUNF-Dyn - Partitioning perAUNF k

#pragma omp parallel for private(k,υ) schedule(dynamic,1)1

for k ∈ [1 . . .K] do2

υ = A.scalar[k] × π03

. . .4

#pragma omp atomic5

π += υ6

Algorithm 2 uses a partitioning per AUNF and works similarlyto Algorithm 1.

For this matter, Algorithm 2 has a global list of AUNFs and contains a single loop

to iterate over the tasks. Therefore, there is one set of tasks consisting of all

22

AUNFs of the descriptor to be distributed across the threads.

4.2.2. Manual static scheduling

As the static schedule from OpenMP does not handle heterogeneous tasks,

we have implemented a manual static scheduling, which is based onworst-fit de-

creasingsolution for thebin packingproblem [20]. This strategy sorts the tasks in

descending order based on the computational costs of each task and then sched-

ules one by one, beginning from the least loaded thread. By using this strategy all

threads probably will have tasks assigned impacting in the scalability of the im-

plementation. Furthermore, when larger tasks are scheduled first the load balance

is impacted (i.e., it is easier to obtain load balance working with small tasks).

Scheduling order:

t2 =

k10 k12 k1 k3 k7t3 =

k4 k8k11 k2k13t4 =k14 k15

k10 k11 k13k12

k1 k2 k3 k4 k5 k6 k7 k8 k9

t1 =

j1

#Total cost = 99
#Threads = 4

#Cost= 25

#Cost= 25

#Cost= 23

#Cost= 26
k15 k6

k14 k5 k9

j3 = k14 . . . k15 (#Cost= 20 each)

j2 = k10 . . . k13 (#Cost= 8 each)

j1 = k1 . . . k9 (#Cost= 3 each)

j2j3

Figure 7: Static scheduling strategy.

Figure 7 exemplifies the static scheduling based implementation, where there

are 15 AUNFsk1 . . . k15 to be distributed among four threadst1 . . . t4. All AUNFs

of each tensor product termj have the same computational cost. After ordering

all the tasks, those of the termj3 having the highest costs are distributed one by

one for the least loaded thread, proceeding to the tasks of the termj2, and so on.

Algorithm 3 introduces the third implementation that performs a partitioning

23

per AUNF to achieve better load balance. The algorithm starts by creating a paral-

lel region (line 1), which defines the private variables. Thetasks that each thread

handles are defined by two indices,start andend, stored in theB structure (line

4) which is filled through an algorithm that implements the strategy illustrated by

Figure 7. Each thread reads the indices of its tasks through its identifier, called

tid. The value stored in the variabletid corresponds to the thread number returned

by the functionompget threadnum, available in the OpenMP library. Note that

B is filled in a preprocessing step, which was not considered inthe experiments

presented in Section 5 due to the negligible overhead of thisoperation.

Algorithm 3: AUNF-Man - Partitioning perAUNF k

#pragma omp parallel private(j,k,tid,υ)1

begin2

tid = ompget threadnum()3

for j ∈ [1 . . . T] do4

for k ∈ [B[tid].term[j].start..B[tid].term[j].end] do5

υ = A[j].scalar[k] × π06

. . .7

#pragma omp atomic8

π += υ9

end10

5. Performance Evaluation

This section presents an evaluation of the three parallel implementations of the

Split algorithm (Section 4.2), considering analysis of speed-up, synchronization

and scheduling overhead, memory affinity, and task mapping policies. Moreover,

it describes a strategy for automatically selecting the best implementation for each

Markovian model.

24

We prioritize the use of examples with large state spaces reaching the limit for

machines with 4GB or even 8GB of RAM to demonstrate how the parallelization

improves the model solution in overall. Note that there is a natural increase in

terms of solution power using parallelism because one couldpotentially store in

modern machines even bigger auxiliary vectors. We point outthat our aim is to

look at the time spent for each iteration in the VDP using different partitioning

approaches so the gains are replicated in all numerical method iterations needed.

5.1. Environment Setup

We have performed experiments in a shared-memory machine composed of

two Intel Xeon E5520 (Nehalem) Quad-Core processors with Intel Hyper-Threading

technology (totalizing 16 logical processors) and 16 GB of memory. This machine

is a Non-Uniform Memory Access (NUMA) system [21], where each processor

access its local memory and with a higher cost the remote memory through the

Intel Quick Path Interconnect (QPI). Each processor runs at2.27 GHz frequency,

8 MB L3 cache shared by all cores, 1 MB L2 cache and 128 KB L1 cache per

core. The software stack is a Linux OS with g++ 4.2.4 compilerthat implements

the OpenMP version 2.5. All implementations were compiled using the compiler

optimization flag-O3.

Additionally, the experiments were performed using the interleaving mode

from NUMA API [22] via thenumactlLinux command. The interleaving mem-

ory allocation policy [22] is commonly used to improve memory access perfor-

mance for bandwidth and its impact in our experiments is discussed in Section

5.4. Furthermore, to avoid thread migration overheads and core resource sharing

between threads (for less than 16 threads) we have performedthread binding via

schedsetaffinityroutine from GNU C library.

25

5.2. Metrics, Models, and Algorithms

The experiments consider four models and three input sizes for each model.

A detailed description of each model is presented in Section3, i.e., the variation

on the input sizes follow the number of tensor product terms in each descriptor,

which is based mainly on the number of synchronizing events present in each

model. The main difference between the models is heterogeneity and the num-

ber of tasks involved in the computation. The models RS, SDT, ASP, and MSA

(described in Section 3) have different number of tensor product terms in each

defined input size, thus determining the number of tasks included on each par-

titioning approach. Additionally, we subdivided the models based on their task

patterns:homogeneous tasks, mixed tasks, andheterogeneous tasks. The task pat-

tern named ashomogeneous tasksis related to those task sets where tasks have the

same (or very similar) computational costs in terms of floating-point multiplica-

tions. In themixed taskspattern, we have a set of tasks with equal costs and other

individual tasks with different costs. Finally,heterogeneous tasksindicate that no

matter which partitioning was used (per tensor product term, i.e., Coarse-grain;

per AUNF, i.e.,Fine-grain), each task has a different computational cost in com-

parison to others. The main characteristics of each model and their analyzed task

types can be seen in Table 5.

In Table 5, the columnCoarse-grainpresents the number of product tensor

terms that are present in each model descriptor for all configurations discussed in

Section 3. We also present the number of generated AUNFs in the column that

refers to theFine-graintasks.

26

Table 5: Model classification based on its task costs and a description of the number of tasks for
each granularity. The models differ in terms of number of tasks and their computational costs that
are equal for the coarse and fine granularity, i.e., the smallest RS model has 44 coarse-grained
tasks that have a computational cost in terms of multiplications equals to 369,098,752. In the fine
granularity the RS smallest input size has 176 tasks with thesame computational costs.

Task type Model
Coarse-grain Fine-grain

Small Medium Large Small Medium Large
Homogeneous RS 44 44 48 176 704 384

Mixed
SDT 43 46 49 72 77 79
ASP 10 17 21 ≈68 x 103 ≈337 x103 ≈698 x103

Heterogeneous MSA 43 51 59 ≈16 x 106 ≈38 x 106 ≈72 x 106

We have executed each model for 2, 4, 8 and 16 threads to obtaintheir speedup.

For each experiment, we have computed the standard deviation and the speedup

based on the execution time of the Split algorithm measured over five hundred

iterations of the Power method. For fair comparison reasonswe used this value

even for models that converge in less iterations. We evaluated three parallel imple-

mentations, namelyTP-Dyn (Algorithm 1, where we followed a partitioning per

tensor product term (coarse-grained tasks) following a dynamic scheduling strat-

egy), AUNF-Dyn (Algorithm 2, by partitioning per AUNF (fine-grained tasks))

following a dynamic scheduling strategy, andAUNF-Man (Algorithm 3, where a

manual static scheduling using partitioning per AUNF was conducted). Although

we performed profiling analysis during the development of our application, we

found that more interesting results are related to OpenMP implementation choice

aspects. Therefore, we focus on those aspects in the next sections.

5.3. Results and Analysis

Here, we present the main results of the three OpenMP-based implementations

of the Split algorithm for four Markovian models (Section 3). After describing an

overview of the results, Sections 5.4 and 5.5 present the impact of the interleaving

27

policy and the overhead analysis, respectively.

5.3.1. Homogeneous tasks

This section presents the performance results for the RS model. Each input

size generates a different number of coarse-grained and fine-grained tasks (Table

5). Moreover, RS is classified as homogeneous-task-type model since it has a set

of tasks with the same computational costs for each granularity.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(a) Small.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(b) Medium.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(c) Large.

TP−Dyn

AUNF−Dyn

AUNF−Man

Figure 8: Speed-ups for the RS model and three input sizes –homogeneous-task-type model.

Figure 8 depicts the speed-up of the three aforementioned implementations.

Note that each one has a similar speed-up curve with a maximumdifference be-

tween the highest and the lowest speed-ups about eight percent (e.g., for the small

input size (a)). AUNF-Dyn has the best results for all input sizes, obtaining a

speed-up value of up to 6.8. This occurs because AUNF-Dyn hassmaller granu-

larity compared to TP-Dyn, which allows OpenMP to have a better scalability.

In addition, different from the AUNF-Man approach, AUNF-Dyn uses dy-

namic scheduling, which overcomes overheads caused by resources contention

during the computation. On the other hand, AUNF-Man has its load balancing

strategy based on precomputed theoretical costs, not considering that kind of cost.

One important issue to observe in Figure 8 is that all implementations obtained

a better scalability for eight threads than the obtained onefor 16 threads. This

28

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(a) Small.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(b) Medium.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(c) Large.

TP−Dyn

AUNF−Dyn

AUNF−Man

Figure 9: Speed-ups for the SDT model and three input sizes –mixed-task-type model.

issue is confirmed on the other input models as well and its cause is explained by

the core resource sharing, which occurs in the experiments for 16 threads where

there are two threads running on each core.

5.3.2. Mixed tasks

This section discusses the performance results for the ASP and SDT mod-

els. In a general way, these models have tasks with differentcomputational costs.

However, a wide range of tasks has the same computational costs. Therefore, the

ASP and SDT models have been classified as mixed-task-type models.

Figure 9 presents the speed-up curve for the SDT model. The three parallel

implementations scale up and have a similar speed-up curve for all input sizes.

The speed-ups are very similar, because SDT model has a regular number of tasks

in both granularities (see Table 5). The number of tasks is enough to scale up until

16 threads. AUNF-Man approach obtains the highest speed-upvalue up to 5.4.

However, the performance gains are lower than those obtained for the RS model.

The bottleneck for the SDT model is the synchronization overhead as presented

in Section 5.5.2.

Figure 10 presents the speed-up curve for the ASP model. AUNF-Man im-

plementation has a better speed-up of up to 7.4. The small input size (a) has few

29

tasks to distribute and hence not enough tasks to obtain a good scalability with 16

threads on coarse granularity (TP-Dyn). The performance results of (b) and (c)

inputs show that TP-Dyn scales up better, but still does not scale up well with 16

threads. AUNF-Dyn showed the lowest speed-up values because the number of

loop iterations (tasks) is large enough to generate an overhead of dynamic schedul-

ing. AUNF-Man works in the same granularity of AUNF-Dyn, butwith a static

scheduling strategy that does not generate the same overhead as AUNF-Dyn.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(a) Small.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(b) Medium.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(c) Large.

TP−Dyn

AUNF−Dyn

AUNF−Man

Figure 10: Speed-ups for the ASP model and three input sizes –mixed-task-type model.

5.3.3. Heterogeneous tasks

The Master-Slave Architecture (MSA) model is composed of a set of heteroge-

neous tasks on both granularities and a very large number of tasks (Table 5). Fig-

ure 11 presents the performance results. AUNF-Dyn did not achieve good speed-

up results for the same reason as the ASP model. The number of tasks to distribute

across threads is very large and theschedule(dynamic,1)clause can produce an

considerable overhead in this situation. Furthermore, another parameter that im-

pacts in the dynamic scheduling overhead is the number of threads involved. This

can be observed in the experiments for 16 threads where the performance results

difference between the implementation AUNF-Dyn and the other ones are higher

in comparison to the experiments with a smaller number of threads.

30

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(a) Small.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(b) Medium.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16

S
pe

ed
−

up

Number of threads

(c) Large.

TP−Dyn

AUNF−Dyn

AUNF−Man

Figure 11: Speed-ups for the MSA model and three input sizes –heterogeneous-task-type model.

In addition, similar to the SDT model, the MSA model presented a large syn-

chronization overhead which is discussed in Section 5.5.2.Despite this issue, our

parallel implementations generated a speed-up value of up to 5.1.

5.4. Impact of the interleaving policy

To improve performance and scalability in NUMA machines, itis important to

take into account issues such as memory and thread affinity. Data placement and

thread binding become important aspects because local memory access is faster

than remote memory access and OpenMP 2.5 has no support for controlling it [8].

There are several techniques that can help optimizing memory access performance

for latency or bandwidth. Well-known strategies to performdata placement are

first-touchandnext-touch[23], interleaving policy[22], among others.

The sequential Split algorithm has a static memory access pattern, i.e., each

task accesses the same data during the entire application execution. Therefore, we

could reduce memory access latency in the parallel implementations by placing

each task into the memory bank of the processor executing it.However, many

tasks can read from and write to the same data during the execution, not making it

possible to take completely advantage of the local data placement. Furthermore,

implementations that use dynamic scheduling normally havean irregular memory

31

access pattern, which is another reason to not use local dataplacement strategies.

Therefore, we optimized our parallel Split implementations for bandwidth us-

ing aninterleaving policy[22]. The interleaving memory allocation policy defines

that each memory page is assigned in a round-robin fashion over the memory

banks. We improved the memory access performance for most ofour experi-

ments. Table 6 presents a summary of the improvements in comparison to the

default memory allocation policy (local memory allocation).

Table 6: Interleaving mode impact for 16 threads and the medium input size.

Model Performance Improvement
Medium input size TP-Dyn AUNF-Dyn AUNF-Man

RS 7.2% 24.9% 23.8%
SDT 7.8% 14.1% 17.0%
ASP 0.1% 11.3% -4.0%
MSA -2.5% 8.6% 2.2%

The interleaving strategy generated improvements of up to 25%. However,

ASP model with TP-Dyn and MSA model with AUNF-Man implementation, had

no considerable improvement. On the other hand, the ASP model/AUNF-Man and

MSA model/TP-Dyn, we obtained negative results causing a small performance

loss. The reason is that each implementation requires a different memory access

pattern, accessing the remote memory more than expected.

5.5. Overhead Analysis

Parallel solutions developed via the OpenMP API can have overheads related

to the thread management, scheduling clauses, time spent inbarriers, among oth-

ers [8]. This section presents the analysis of two kinds of overhead in OpenMP:

dynamic scheduling and synchronization.

32

5.5.1. Dynamic scheduling overhead

Overheads of dynamic scheduling are a well-known drawback in OpenMP [8].

We have performed experiments to show the impact of theschedule(dynamic,1)

strategy with the increasing number of loop iterations, specially in the range of

our Markovian models. Furthermore, a common solution for this problem is to

increase the chunk size of thescheduleclause [8]. However, this solution is not

suitable for heterogeneous workloads, leading to unsatisfactory load balance. The

schedule(guided,1)strategy is a better option that initially defines a large chunk

size and at each assigned chunk, decreases its size to 1.

In order to evaluate the scheduling clauses we have developed a benchmark

with a loop, which performs a summation. The parallelization is accomplished via

thefor work-sharing construct and all threads update a private variable. Moreover,

the for construct is not combined with theparallel construct to correctly profile

the execution time without the influence of thread creation overhead.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10000 100000 1e+06 1e+07 1e+08

T
im

e
(s

)

Number of Iterations

Sequential
Dynamic,1
Guided ,1

Figure 12: Overhead of dynamic scheduling strategies in function of the number of loop iterations.

33

Figure 12 presents the processing time in seconds for the sequential bench-

mark, parallel benchmark using theschedule(dynamic,1), and theschedule(guided,-

1) clauses. The results demonstrate that the overhead of thedynamic,1scheduling

strategy is related to the increasing number of loop iterations. With a small number

of loop iterations, the generated overhead can be considered low. From the graph,

we also observe that the overhead remains the same, even witha high number of

iterations, when using theguided,1scheduling strategy. This result motivated us

to explore such strategy in our algorithms.

Thus, the use of guided scheduling type is a good solution to improve our re-

sults from AUNF-Dyn with models ASP and MSA, since they have alarge num-

ber of loop iterations (tasks) in the fine granularity. However, using the guided

scheduling for heterogeneous workloads is not straightforward. Large chunks

are initially distributed across the threads, so if the firsttasks assigned have high

costs and the next tasks assigned have low costs, some threads may become over-

loaded, causing load imbalance. We have performed experiments with the use of

schedule(guided,1)clause in the AUNF-Dyn implementation by sorting the tasks

based on their computational costs in ascending and descending order.

Table 7: Comparison betweendynamic,1andguided,1scheduling speed-up values with different
task ordering strategies for 16 threads.

Model Input Size dynamic,1
guided,1

Ascending order Descending order

ASP
Small 5.44 7.92 5.72
Medium 5.12 6.97 5.60
Large 4.91 6.79 5.56

MSA
Small 3.47 4.27 1.13
Medium 2.96 4.49 1.12
Large 2.92 4.75 1.18

34

Table 7 presents the performance results for the guided scheduling type with

different task ordering strategies. The results show how our application is influ-

enced by overheads of dynamic scheduling. Moreover, sorting the tasks in de-

scending order of computational cost causes a considerableperformance loss for

the MSA model. The same did not occur with the ASP model because it has less

heterogeneous tasks than MSA, minimizing load imbalance effects. In addition,

models ASP and MSA are more affected by overheads of dynamic scheduling be-

cause the number of loop iterations in AUNF-Dyn implementation is considerably

higher compared to the other models.

5.5.2. Synchronization overhead

In order to measure overhead in a shared-memory parallel implementation,

one can make a comparison between the time spent to execute the sequential

program against the time spent to execute the parallel program using 1 thread.

Here we measured the synchronization overhead [24] by executing the parallel

implementation of TP-Dyn using one thread with and without theatomicclause

(without any memory affinity optimization). Figure 13 presents the percentage of

overhead computed for all Markovian models presented in Section 3.

From Figure 13 we observe the high synchronization overheadin the execu-

tion for the models MSA and SDT compared to the RS and ASP models, where

we obtained better performance results. In order to verify the cause of the high

overhead, we computed the number of accesses performed to atomic regions. The

results from Table 8 show that there is no relation between the number of accesses

to atomic regions with the level of overhead measured.

As the execution occurs with only one thread, the reason is not related to com-

mon concurrency issues, such as race conditions or cache coherency problems.

35

 0

 10

 20

 30

 40

 50

RS SDT ASP MSA

O
ve

rh
ea

d
(%

)

Small input size
Medium input size
Large input size

Figure 13: Atomic construct overhead.

Table 8: Relation between the increasing number of atomic region accesses and overhead.

Model Atomic region accesses Overhead

SDT large input size 5,682 x106 ≈ 44%
ASP large input size 2,568 x106 ≈ 9%
SDT small input size 554 x106 ≈ 41%
ASP small input size 329 x106 ≈ 14%

During our experiments, we observed that the overheads actually occur in a spe-

cific part of the algorithm, where atomic updates are performed to a entire vector

in a high number of iterations. Additionally, the problem was observed even using

other compilers and machines, for instance. Therefore, from our experiments we

believe the synchronization overhead can come from a specific Linux kernel or

compiler issue regarding lock management.

5.6. Automatic strategy choice

Although, we could use guided scheduling with task ordering(ascending order

of task size) for models with large number of tasks and dynamic scheduling for

models with small number of tasks, the results produced by each implementation

are highly dependent on other model characteristics and system architecture, such

36

as memory access pattern and synchronization overheads. Therefore, there is no

implementation that is able to produce the best results for all models. In order

to solve this problem, we have measured the performance gains of each parallel

implementation at the beginning of the numerical method to know what it is the

best implementation for each case. Thus, we have computed the speed-up for five

iterations and five hundred iterations for all implementations and inputs.

Table 9 presents the results of the experiment. As we observed that for most

of the results, the best implementation for five iterations is also the best (numbers

in bold) implementation for five hundred iterations for all the Markovian models.

When the results did not match, the difference between the speed-ups is minimal,

which means either implementations can be used.

Table 9: Comparison between the speed-up values for 16 threads obtained in five iterations and
five hundred iterations for the three implementations and the Markovian models. The obtained
results show that is often possible to know what is the best implementation just looking at few
iterations. The values of the table represent the results based on the best implementations.

RS model SDT model ASP model MSA model

M
od

el
si

ze

#
ite

ra
tio

ns

T
P

-D
yn

A
U

N
F

-D
yn

A
U

N
F

-M
an

T
P

-D
yn

A
U

N
F

-D
yn

A
U

N
F

-M
an

T
P

-D
yn

A
U

N
F

-D
yn

A
U

N
F

-M
an

T
P

-D
yn

A
U

N
F

-D
yn

A
U

N
F

-M
an

Small
5 6.01 6.47 6.30 5.20 5.30 5.24 3.93 8.01 7.14 4.52 4.27 4.91

500 6.01 6.53 6.30 5.30 5.11 5.37 3.90 7.92 7.40 4.69 4.27 4.88

Medium
5 6.28 6.64 6.50 5.07 5.25 5.28 4.79 7.17 6.39 4.33 4.70 3.92

500 6.25 6.63 6.40 5.02 5.27 5.31 4.86 6.97 6.33 4.34 4.49 3.90

Large
5 6.46 6.79 6.88 4.90 4.96 5.02 6.12 6.80 5.40 4.73 4.59 4.54

500 6.66 6.74 6.68 4.93 4.81 4.85 6.15 6.79 5.34 5.13 4.75 4.50

There is a cost associated to select the best implementation. As we can exe-

cute each implementation sequentially, without necessarily restarting the numer-

ical method, we can keep the last computed results and resumeexecution after

choosing the best implementation. The cost is basically thesummation of the

37

execution time of the two worst implementations for five iterations minus the ex-

ecution time of the best one for ten iterations.

Table 10: Cost details of the automatic strategy choice for the medium input size, considering an
entire execution.Cost is the ratio of the total execution time using the automatic strategy choice
to the total execution time with the best implementation.

Model Total of Total (s) First 15 iterations Remaining iter.
Total (s) Cost

(Medium) iterations (Best impl.) TP-Dyn AUNF-Dyn AUNF-Man Chosen impl.

RS 131 ≈ 935 37.85 35.68 36.96 827.69 ≈ 938 ≈ 0.37%
SDT 71,057 ≈ 348,291 25.92 24.69 24.51 348,218 ≈ 348,293 ≈ 0.0005%
ASP 987 ≈ 6,756 49.08 34.22 37.68 6,653 ≈ 6,774 ≈ 0.27%
MSA 10,160 ≈ 98,258 50.03 48.36 55.67 98,112 ≈ 98,267 ≈ 0.009%

Table 10 summarizes the cost for finding the best implementation in relation

to an entire execution. The cost is higher when the difference of the execution

time of the best implementation compared to the other ones ishigher as well.

However, for ASP and MSA models the cost is diminished by the large number of

Power method iterations. In this sense, although the numberof iterations for the

RS model is small, the cost of the automatic strategy choice isalso very small.

6. Related Work

The related work for this paper comes from two research areas: large Marko-

vian system solvers and performance evaluation of OpenMP-based programs.

This section provides an overview of research projects fromthese two areas.

6.1. Parallel solutions of Markovian systems

Parallel algorithms for solving large and sparse Markoviansystems only re-

quire data loading into processors before starting computation. However, Kronecker-

based algorithms introduced data dependency and locality that must be analyzed

38

prior to the data loading and execution. This is required because these solutions

are iterative and their convergence control demands explicitly synchronizing tasks.

Da Cunha and Hopkins [25] considered the basic GMRES iterationwith the

Arnoldi process. Nevertheless, the work was based on MarkovChains with the

state space explosion problem since it makes it difficult formodeling and solving

on parallel systems. Erhel [26] proposed a parallel implementation of Arnoldi and

GMRES methods using the Single Program Multiple Data (SPMD) programming

style. Gimenez et al. [27] developed a parallel implementation for the Power

Method for solving linear equations obtained through Markov Chains models.

Tadonki and Philippe [28] have proposed a recursive versionfor the parallel

multiplication of a vector by a product of matrices, in contrast to our approach

that multiplies a vector by a descriptor. In the context of continuous time Markov

chains, Kemper [29] has modified the Kronecker representation for a parallel

matrix-vector multiplication. His implementation, basedon POSIX threads, uses

a fast multiplication scheme with no write conflicts on iteration vectors.

Deavours and Sanders [30] devised a method to efficiently store a Markovian

transition matrix on disk, thus overlapping computation and data transferring on a

standard workstation. They use two processes that communicate via shared mem-

ory, efficiently utilizing the system disk and CPU. Knottenbelt and Harrison [31]

proposed a distributed software architecture to embed the matrix-vector multipli-

cation solution algorithm, allowing two processes per core, and achieving good

speed-ups for models up to 50 million states. Bell and Haverkort [32] presented

distributed disk-based algorithms for matrix-vector multiplications in the context

of CSL model checking-based performance. Results illustratethe effectiveness of

the approach proposed for models with several hundreds of million states running

39

on a cluster with 26 dual-processor nodes.

Kwiatkowska et al. [33] mixed parallel and symbolic techniques to tackle

the state space explosion problem proposing an out-of-coresolution to matrix-

vector multiplication for models near 216 million states. Dingle et al. [34] in-

vestigated hypergraph partitioning schemes to minimize inter-processes commu-

nication when applying a uniformization-based technique to derive response time

densities for large models. The authors showed results for Generalized Stochastic

Petri Nets [35] and flat representations of Markov chains.

Blom et al. [36] used a bisimulation approach to consider stochastic model

variants to enable the model checking of smaller and probabilistic equivalent mod-

els. Bisimulation techniques usually allow substantial model reduction in terms of

state space size, however, the gains in storage affect the time to solve the models.

The authors present a distributed signature-based algorithm for the bisimulation

quotient and demonstrate the feasibility for a broad variation of case studies.

Previous works have addressed iterative methods, disk-based approaches, bisim-

ulation, model checking, all for matrix-vector multiplications in parallel (or dis-

tributed) settings. Our approach is to consider VDP insteadof matrix-vector prod-

ucts focusing on the speed-up of the overall process by partitioning descriptors

into more manageable and scalable tasks. Moreover, we wouldlike to mention

that we have studied the trade-offs between commonly used VDP techniques such

as Shuffle and Split algorithms. To the best of the authors’ knowledge, the most

closely related work concerns Kemper [29], however, the author transformed the

Kronecker representation into a flat representation that often incurs in high mem-

ory costs. The direction taken in the present work differs from Kemper’s research

as we are working with Kronecker algebra operations. Using Kronecker storage

40

features combined with parallel mechanisms allows faster solutions even for the

models where some extra memory is used (the Split algorithm’s case).

6.2. OpenMP-based programs

OpenMP (Open Multi-Processing) [8] is an API for shared memory multi-

processing programming. Since then, several researchers and developers have

been evaluating the performance of OpenMP-based applications in comparison

with other APIs, especially MPI. For example, Krawezik and Cappello [37] com-

pare MPI and three OpenMP programming styles using a subset of the NAS

benchmark along with two data set sizes and shared memory processors. The

authors concluded that OpenMP provides competitive performance compared to

MPI with the price of a strong programming effort. Mallón et al. [38] have also

compared MPI and OpenMP and concluded that data locality is one of the main

obstacle for obtaining good performance in OpenMP applications.

Mattson [39] developed a framework to evaluate OpenMP considering its main

features and possible enhancements for the API. One of his remarks is that com-

pared to other parallel programming APIs, constructs in OpenMP are the most

part semantically neutral compiler directives. Therefore, the semantics of a par-

allel and sequential program are equivalent. And this is oneof the main reasons

why several programs have been developed in OpenMP.

Several software systems have been then developed in OpenMPand their ef-

ficiency evaluated. Bungartz et al. [40] implemented an OpenMP-based Black-

Scholes solver, which is used for option pricing, and evaluated it on multi-core

architectures. Their experiments mainly considered different number of threads.

Terboven et al. [41] presented implementation choices for an OpenMP-based Navier-

Stokes Solver and also mainly varied the number of threads intheir experiments.

41

Maris and Wannamaker [42] described modifications made to a 3D magnetotel-

luric inversion program to run efficiently in parallel on a multi-core desktop PC.

Their experiments focused on varying the loop frequency andnumber of cores

used by their program. Different from these existing projects, our work provides a

deeper analysis considering different number of threads, overhead, memory affin-

ity, and task mapping policies.

7. Concluding Remarks

This paper presented three parallel implementations of theSplit algorithm

for handling Kronecker descriptors. Our implementations were developed using

OpenMP for shared-memory architectures. We performed extensive experiments

using four types of models with three input sizes each. We analyzed speed-up,

synchronization and scheduling overheads, task mapping policies, and memory

affinity. Our experiments demonstrated a speed-up value of up to eight using

eight cores with Intel Hyper-Threading technology. We observed that the choice

of the implementation depends on the input size and the modelcharacteristics to

be evaluated. Therefore, as the solvers are iterative applications, by executing a

few iterations of the three implementations it is possible to automatically select

the best one to solve and analyze models.

The differences of the three implementations lay in the taskscheduling strat-

egy and task granularity. Two mplementations are based on OpenMP standard and

the third one is based on manual static task scheduling. For the model consisting

of homogeneous tasks, the dynamic scheduling strategy using fine-grained tasks is

more suitable than the static one. The reason is that, for such model, the schedul-

ing overhead using the clauseschedule(dynamic,1)is negligible due to the small

42

number of tasks. Moreover, for the model composed of few tasks in the coarse

granularity, the scalability of the parallel execution is not as good as in the fine

granularity of the same model. This happens because there isnot enough work to

be distributed among the processors in order to scale it up.

For the models composed of a very large number of tasks, the overhead im-

posed by the clauseschedule(dynamic,1)produces negative effects in the speed-

up. To minimize the overhead effect, the dynamic schedulingcan be changed to

the guided one. However, guided scheduling can cause load imbalance without

applying any task ordering strategy. Considering that the guided clause initially

distributes large chunks of work, it is important to sort tasks by ascending order

of their sizes to improve load balance and hence reduce execution time.

Another source of expected overhead is the number of atomic operations.

However, from our experiments, we observed that there is no strong relation be-

tween the number of atomic operations and the overhead imposed by the use of the

atomic construct from OpenMP. Furthermore, applying an interleaving memory

allocation policy improves the memory access performance in NUMA machines,

mainly in applications that cannot take advantage of thefirst-touchtechnique. For

example, applications which use dynamic scheduling strategies, i.e., the memory

access pattern becomes irregular. Regarding code optimization, as future work,

we will perform a deeper analysis of memory and cache and the impact of the

architecture (i.e., NUMA based systems, different cache levels, and Simultaneous

Multithreading technology), and other data partitioning options.

The implementations presented in this paper achieve high performance results,

which have a direct impact on the solution of large Markovianmodels based on

Kronecker representations. The discussions presented here could also be used for

43

researches working in similar programming models. In addition, this paper is an-

other example of the successful use of OpenMP for solving scientific applications.

References

[1] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation, Prince-

ton University Press, USA, 2009.

[2] M. Bernardo, J. Hillston (Eds.), Formal Methods for Performance Evalua-

tion, SFM 2007, Advanced Lectures, Vol. 4486 of LNCS, Springer, 2007.

[3] P. Fernandes, B. Plateau, W. J. Stewart, Efficient descriptor-vector multipli-

cation in Stochastic Automata Networks, Journal of the ACM 45(3) (1998)

381–414.

[4] R. M. Czekster, P. Fernandes, J.-M. Vincent, T. Webber, Split: a flexible

and efficient algorithm to vector-descriptor product, in: Proceedings of the

2nd International Conference on Performance Evaluation Methods and Tools

(ValueTools 2007), Vol. 321, 2007, pp. 1–8.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, PWSPublishing

Company, Boston, MA, USA, 1995.

[6] R. M. Czekster, C. A. F. De Rose, P. Fernandes, A. M. Lima, T. Webber,

Kronecker Descriptor Partitioning for Parallel Algorithms, in: Proceedings

of the Spring Simulation Multiconference 2010 (SpringSim 2010), no. 242,

2010, pp. 1–4.

[7] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming

with the message passing interface, MIT Press, 1999.

44

[8] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared Mem-

ory Parallel Programming, The MIT Press, 2007.

[9] B. Wilkinson, M. Allen, Parallel programming: techniques and applications

using networked workstations and parallel computers, Prentice Hall, 1999.

[10] R. Blikberg, T. Sørevik, Load balancing and OpenMP implementation of

nested parallelism, Parallel Computing 31 (10-12) (2005) 984–998.

[11] M. Davio, Kronecker Products and Shuffle Algebra, IEEE Transactions on

Computers 30 (2) (1981) 116–125.

[12] L. Brenner, P. Fernandes, A. Sales, The Need for and the Advantages of

Generalized Tensor Algebra for Kronecker Structured Representations, In-

ternational Journal of Simulation: Systems, Science & Technology (IJSIM)

6 (3-4) (2005) 52–60.

[13] B. Plateau, On the stochastic structure of parallelism and synchronization

models for distributed algorithms, ACM SIGMETRICS Performance Eval-

uation Review 13 (2) (1985) 147–154.

[14] R. M. Czekster, P. Fernandes, T. Webber, Efficient Vector-Descriptor Prod-

uct Exploiting Time-Memory Trade-offs (accepted), ACM SIGMETRICS

Performance Evaluation Review (2012) 1–8.

[15] R. M. Czekster, P. Fernandes, A. Sales, T. Webber, Restructuring tensor

products to enhance the numerical solution of structured Markov chains, in:

Proceedings of the 6th International Conference on the Numerical Solution

of Markov Chains (NSMC ’10), 2010, pp. 36–39.

45

[16] R. M. Czekster, P. Fernandes, T. Webber, GTAexpress: a Software Pack-

age to Handle Kronecker Descriptors, in: Proceedings of the6th Inter-

national Conference on Quantitative Evaluation of Systems (QEST 2009),

IEEE Computer Society, Washington, DC, USA, 2009, pp. 281–282.

[17] A. Benoit, P. Fernandes, B. Plateau, W. J. Stewart, On the benefits of using

functional transitions and Kronecker algebra, Performance Evaluation 58 (4)

(2004) 367–390.

[18] P. Fernandes, A. Sales, A. R. Santos, T. Webber, Performance Evaluation of

Software Development Teams: a Practical Case Study, Electronic Notes in

Theoretical Computer Science (ENTCS) 275 (C) (2011) 73–92.

[19] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, A. Sales, Performance

Models for Master/Slave Parallel Programs, Electronic Notes In Theoretical

Computer Science (ENTCS) 128 (4) (2005) 101–121.

[20] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, Approximation algorithms

for bin packing: a survey, PWS Publishing Co., Boston, MA, USA, 1997,

pp. 46–93.

[21] M. J. Quinn, Parallel Programming in C with MPI and OpenMP, Mc-

GrawHill, 2003.

[22] A. Kleen, A NUMA API for Linux, Novell, Inc., technical Whitepaper

(2005).

[23] C. Terboven, D. an Mey, D. Schmidl, H. Jin, T. Reichstein, Data and thread

affinity in openmp programs, Conference On Computing Frontiers: Proceed-

46

ings of the 2008 workshop on Memory access on future processors: a solved

problem? ACM. 8p, Ischia, Italy, 2008.

[24] J. M. Bull, Measuring synchronization and scheduling overheads in

OpenMP, in: European Workshop on OpenMP, 1999.

[25] R. D. da Cunha, T. Hopkins, A parallel implementation of the restarted GM-

RES iterative algorithm for nonsymmetric systems of linear equations, Ad-

vances in Computational Mathematics 2 (3) (1994) 261–277.

[26] J. Erhel, A parallel GMRES version for general sparse matrices, Electronic

Transactions on Numerical Analysis 3 (1995) 160–176.

[27] D. Gimnez, C. Jimnez, M. J. Majado, N. Marn, A. Martn, Solving Eigen-

value Problems on Networks of Processors, in: Third International Con-

ference on Vector and Parallel Processing (VECPAR ’98), Springer-Verlag

(LNCS 1573), 1999, pp. 85–99.

[28] C. Tadonki, B. Philippe, Parallel multiplication of a vector by a kronecker

product of matrices, Parallel numerical linear algebra (2001) 71–89.

[29] P. Kemper, Parallel Randomization for Large StructuredMarkov Chains, in:

Proceedings of the International Conference on Dependable Systems and

Networks (DSN’02), IEEE Computer Society, Washington, DC, USA, 2002,

pp. 657–668.

[30] D. D. Deavours, W. H. Sanders, An Efficient Disk-Based Tool for Solving

Large Markov Models, Performance Evaluation 33 (1) (1998) 67–84.

47

[31] W. J. Knottenbelt, P. G. Harrison, Distributed Disk-based Solution Tech-

niques for Large Markov Models, in: Proceedings of the 3rd International

Workshop on the Numerical Solution of Markov Chains (NSMC ’99), 1999,

pp. 58–75.

[32] A. Bell, B. R. Haverkort, Distributed disk-based algorithms for model check-

ing very large Markov chains, Formal Methods in System Design 29 (2)

(2006) 177–196.

[33] M. Kwiatkowska, R. Mehmood, G. Norman, D. Parker, A Symbolic Out-of-

Core Solution Method for Markov Models, Electronic Notes in Theoretical

Computer Science (ENTCS) 68 (4) (2002) 589–604.

[34] N. J. Dingle, P. G. Harrison, W. J. Knottenbelt, Uniformization and hyper-

graph partitioning for the distributed computation of response time densities

in very large Markov models, Journal of Parallel and Distributed Computing

64 (8) (2004) 908–920.

[35] G. Chiola, A. M. Marsan, G. Balbo, G. Conte, Generalized stochastic Petri

nets: A definition at the net level and its implications, IEEETransactions on

Software Engineering 19 (2) (1993) 89–107.

[36] S. Blom, B. R. Haverkort, M. Kuntz, J. van de Pol, Distributed Markovian

Bisimulation Reduction aimed at CSL Model Checking, ElectronicNotes in

Theoretical Computer Science (ENTCS) 220 (2) (2008) 35–50.

[37] G. Krawezik, F. Cappello, Performance comparison of MPIand three

OpenMP programming styles on shared memory multiprocessors, in: Pro-

48

ceedings of the 5th Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA’03), ACM, 2003, pp. 118–127.

[38] D. Mallón, G. Taboada, C. Teijeiro, J. Touriño, B. Fraguela, A. Ǵomez,

R. Doallo, J. Mourino, Performance evaluation of MPI, UPC andOpenMP

on multicore architectures, Recent Advances in Parallel Virtual Machine and

Message Passing Interface (2009) 174–184.

[39] T. G. Mattson, How good is OpenMP, Scientific Programming 11 (2) (2003)

81–93.

[40] H. J. Bungartz, A. Heinecke, D. Pfluger, S. Schraufstetter, Parallelizing a

Black-Scholes solver based on finite elements and sparse grids, in: Pro-

ceedings of the IEEE International Symposium on Parallel & Distributed

Processing (IPDPS’10), IEEE, 2010, pp. 1–8.

[41] C. Terboven, A. Spiegel, D. an Mey, S. Gross, V. Reichelt, Experiences

with the OpenMP Parallelization of DROPS, a Navier-Stokes Solver writ-

ten in C++, in: Proceedings of the first international workshop on OpenMP

(IWOMP 2005), 2005.

[42] V. Maris, P. E. Wannamaker, Parallelizing a 3D finite difference MT inver-

sion algorithm on a multicore PC using OpenMP, Computers & Geosciences

36 (10) (2010) 1384–1387.

49

