
CANPRO: A Conflict-Aware Protocol for
Negotiation of Cloud Resources and Services

Marco A. S. Netto

IBM Research
Sao Paulo, Brazil

Abstract. In a Cloud environment, users face the challenge of selecting
and composing resources and services from a single or multiple providers.
As several negotiations can occur concurrently, information on service
and resource availability may be out-of-date, thus requiring several iter-
ations between users and providers until an agreement is achieved. To
address this problem, we introduce CANPRO, a Conflict-Aware Nego-
tiation Protocol for allocating Cloud resource and services aimed at re-
ducing cancellation messages during negotiation. CANPRO allows users
(or entities on their behalf) to know the amount of resources being con-
currently negotiated by other users and the number of users interested
in such an amount, while still keeping users’ information private. By
knowing this information, users can, for instance, confirm allocation re-
quests with lower chances of having collisions with other users. In addi-
tion, for the same reason, users can increase their time deciding which
(combination of) resources they want to allocate. The paper presents
comparative results of CANPRO against the popular two-phase commit
protocol (2PC) and a state-of-the-art protocol named SNAP-3PC. We
used think time, network overhead, number of concurrent negotiations
and providers as main metrics. The results are promising and the proto-
col can be used in scenarios other than Cloud Computing; for instance,
bookings of health services, cars, tickets for venues, schedule of appoint-
ments, among others.

1 Introduction

Users have access to several services in the Internet to perform tasks that range
from exchanging e-mails to allocating high performance computing resources.
Some of these services and resources are offered by Cloud providers using a pay-
as-you-go model. As the number of these providers and services increases, users
face the challenge of selecting, and possibly, composing them in a complex and
dynamic computing environment.

Several users may request resources and services at the same (or within the
same time interval). During negotiations, information about resource availability,
from the moment of selecting to the moment of confirming the allocations, may
be out-of-date. This has a particular impact when users are composing services
from multiple providers, as a failure in a single allocation may result in a rene-
gotiation with all the resource providers. The failure generates a phenomenon



called livelock, in which multiple users keep trying to allocate resources over and
over gain without success, thus requiring a considerable number of negotiation
messages to satisfy all users. This problem is well-known and investigated in the
area of Distributed Transactions [2], mainly investigated in the data base com-
munity and in the last decade in the Grid community [10]. For Cloud Computing,
such renegotiation may cause violation of Service Level Agreements (SLAs) for
confirmed requests.

A number of protocols for allocating distributed resources have been proposed
in the literature [5–8, 10–12], being most of them aimed at avoiding deadlocks
and livelocks, and reducing the number of messages during negotiations. These
protocols consider that a user is not aware that other users are concurrently
negotiating for the same resources—the user only receives a message that was
not possible to commit the selected resources. Therefore, users have no chance
of optimizing their resource selection in order to avoid such a competition. As a
consequence, negotiations require several messages and users have little time to
make their allocation decisions.

The main contribution of this paper is the Conflict-Aware Negotiation Pro-
tocol (CANPRO), which aims at reducing the number of cancellation messages
during negotiations and increasing the time users can spend to decide which
resources they want to allocate. This is achieved by allowing users (or entities
on their behalf) to know the amount of resources being concurrently negoti-
ated by other users and the number of users interested in such an amount. In
other words, all users are aware about intentions of other users concurrently
negotiating for conflicting resources. By knowing this information, users can,
for instance, confirm allocation requests with lower chances of having collisions
with other users. In addition, for the same reason, users can increase their time
deciding which (combination of) resources they want to allocate. We compare
CANPRO against the popular two-phase commit (2PC) protocol and a state-
of-the-art protocol named SNAP-3PC, which is a three-phase commit extension
of the Service Negotiation and Acquisition Protocol. The results are promising
and the protocol can be used in scenarios other than Cloud Computing.

2 Conflict-Aware Negotiation Protocol

The Conflict-Aware Negotiation Protocol (CANPRO) allows users to be aware
about concurrent negotiations that conflict with one another. Whenever a provider
receives a message from a user requesting for resources, this provider sends back
to the user a message describing: (1) whether the requested capacity is available;
(2) the percentage of that requested capacity that conflicts with the capacity be-
ing concurrently negotiated by other users; and (3) the number of those users
negotiating the conflicting capacity. The users that already received offers from
the provider(s) obtain an update on conflicts, which has an influence on their
decision regarding where and how many resources they should commit.

Figure 1 illustrates an example of information flow between one resource
provider and two users. In this example, User2 requests for resources just after



resource provider sends User1 information about resource availability. Knowing
that User1 is negotiating resources, the provider sends User2 information about
resource availability considering the possible conflicts with User1, who is also
notified about a possible conflict. For this particular example, User1 commits
the original request, whereas User2 commits only part of it in order to avoid
collision. Both users receive confirmations on their commit requests.

Resource
ProviderUser1

Request capacity X

Request capacity Y
Capacity X is available

Capacity Y is available
but k% of Y is in negotiation
with other N users

Commit allocation of 
capacity X

Commit allocation of
capacity Y - %k of Y

Confirm allocation
Confirm allocation

j% of capacity X is in
negotiation with other
M users

User2

Tim
e

Let users know the amount of
computing capacity being 
concurrently negotiated that 
conflicts with the total required 
capacity. In addition, let users 
know the number of users 
negotiating that conflicting
capacity.

Fig. 1. CANPRO execution example.

CANPRO requires a data structure to keep track of the concurrent nego-
tiations. Our current implementation utilizes a linked list of resource offers
called NegotiationQueue. These resource offers [9] contain the resource avail-
ability given to a user by the provider. For CANPRO, these offers are extended
to add conflict information: percentage of conflicting resources and the number
of users negotiating those resources. The NegotiationQueue is updated when (i)
a new request gets to the resource provider; (ii) the provider confirms the re-
source allocation (commit message); (iii) the provider rejects user request; (iv)
the user decides not to continue the negotiation or when the user has to start a
new negotiation.

Based on the NegotiationQueue, the provider can generate conflict informa-
tion and notify users whenever this information changes. The conflict represents
the percentage of resource being concurrent negotiated by multiple users. Be-
fore the resource provider receives the request from User2, the NegotiationQueue
contains only the offer given to User1.

The NegotiationQueue is updated with the offer given to User2 once the new
request arrives. At this point, the provider triggers the algorithm to calculate
conflicts and notify users if any original offer has been changed. Algorithm 1
presents a pseudo-code of how conflicts can be calculated. The algorithm receives
the NegotiationQueue and returns a list of offers containing conflict information.

The variables used in the algorithm are:



Algorithm 1: Pseudo-code for generating list of offers with conflicting
information based on the NegotiationQueue.

bin ← create a bin with the size of the available capacity1

for ∀request ∈ NegotiationQueue do2

Fill bin with requested capacity3

if bin full = true then4

binList.add(bin)5

Create another bin with same capacity6

Fill it with the remaining requested capacity7

for ∀request ∈ NegotiationQueue do8

conflictPortion ← numberOfConflicts ← 09

for ∀bin ∈ binList do10

capacityRange ← find capacity range in bin that contains request11

if capacityRange found = true then12

conflictPortion ← conflictPortion + conflict part with other requests13

in this capacityRange
Increment numberOfConflicts with requests on this capacityRange14

offer ← request information plus conflictPortion and numberOfConflicts15

offerList.add(offer)16

return offerList17

– bin: data structure (e.g. array) that stores request capacity information;
– binList: list of bins;
– capacityRange: if bin is an array, capacityRange is a range index;
– offer: resource availability information to be sent to users;
– offerList: list of offers.

From the user side, once they receive offers (new or updated ones), they
can select providers that sent offers with fewer number of conflicts and lower
percentage of conflicting capacity.

3 Evaluation

The basis for the design of CANPRO is predicated on the idea that by users
knowing that other users are negotiating the same (or a portion of their) re-
sources, they can select a group of resources with lower chances of failures when
commiting the allocation. The experimental results in this section demonstrate
that the principle is sound.

We evaluated CANPRO against the popular two-phase commit protocol
(2PC) and SNAP-3PC protocol. The latter protocol allows users who are ne-
gotiating for resources to be notified when the status of a resource is changed.
We developed a multi-thread event-driven simulator with the implementation of
the two protocols and CANPRO. The simulator receives a file containing infor-
mation on user requests, such as user think time, allocation strategy (single x



multiple providers), network delay to communicate with the providers, and the
provider’s processing time for the request.

We created sets of workloads that vary network delay to send messages, think
time, and processing time that follow a Gaussian distribution. The values vary
1000±200, 2000±1000, and 1000±200 respectively (time in milliseconds). We
also varied the number of concurrent requests and resource providers. For each
workload, half of users requests a specific provider and the other half requests a
group of providers. The total number of requests processed for the three protocols
in the experiments varying all parameters is 14400. As metrics, we measured
the number of trials and number of cancellation messages until a request is
successfully committed.

Figures 2 (a), (c), and (e) present the number of trial allocations for three,
five, and seven providers, respectively, as a function of the number of concur-
rent negotiations (starting with the same number of providers, and a fixed think
time). The lower the number of trials the better the protocol is. The average
number of trials per request increases with both the number of concurrent nego-
tiations and the number of providers. This happens because the chances of users
receiving out-of-date information on resource availability increase with these two
variables. CANPRO outperforms 2PC and SNAP-3PC with the same propor-
tion for the three numbers of providers. This indicates that the improvement
scalability of CANPRO is similar to 2PC and SNAP-3PC.

Figures 2 (b), (d), and (f) present the total number of cancellation messages
for three, five, and seven providers, respectively, as a function of the number of
concurrent negotiations. The behavior of this metric is similar to the previous
one, however when the number of providers is three, it is observed that the higher
the number of concurrent negotiations the higher the advantage of CANPRO
in relation to 2PC. This happens because the number of negotiations is lower
enough so that the percentage of conflicting capacity has more influence than
the number of conflicting negotiations. This scenario is therefore the one where
CANPRO has higher benefits.

In order to observe the effect of the think time for both negotiation protocols,
we fixed the number of providers in five, and the number of concurrent negoti-
ations as ten. As observed in Figure 3, the higher the think time the better the
performance of CANPRO in relation to 2PC and SNAP-3PC. This is due to the
fact that users can receive messages about negotiation conflicts while they are
deciding on resource selection. For 2PC and SNAP-3PC, the higher the think
time values the higher the probability of users receiving out-of-date information.
As it is showed in Figure 3, 2PC and SNAP-3PC do not produce a steady per-
formance, i.e. there is high variability when changing the average think time,
whereas for CANPRO, the number of cancellations is reduced with the increase
in the think time. This is a particularly promising result, as we expect users to
have access to more services in the Internet, so they require time to think about
their decisions.



2 3 4 5 6 7 8 9 10 11
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

T
ri

a
ls

 p
e
r 

R
e
q
u
e
st

2PC SNAP-3PC CANPRO

(a) Three Providers.

2 3 4 5 6 7 8 9 10 11
Number of Concurrent Negotiations

0

10

20

30

40

50

60

T
o
ta

l 
N

u
m

b
e
r 

o
f 

C
a
n
ce

lla
ti

o
n
 M

e
ss

a
g
e
s

2PC

SNAP-3PC

CANPRO

(b) Three Providers.

2 4 6 8 10 12 14 16
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

T
ri

a
ls

 p
e
r 

R
e
q
u
e
st

2PC SNAP-3PC CANPRO

(c) Five Providers.

2 4 6 8 10 12 14 16
Number of Concurrent Negotiations

0

50

100

150

200
T
o
ta

l 
N

u
m

b
e
r 

o
f 

C
a
n
ce

lla
ti

o
n
 M

e
ss

a
g
e
s

2PC

SNAP-3PC

CANPRO

(d) Five Providers.

5 10 15 20
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

T
ri

a
ls

 p
e
r 

R
e
q
u
e
st

2PC SNAP-3PC CANPRO

(e) Seven Providers.

5 10 15 20
Number of Concurrent Negotiations

0

100

200

300

400

500

600

T
o
ta

l 
N

u
m

b
e
r 

o
f 

C
a
n
ce

lla
ti

o
n
 M

e
ss

a
g
e
s

2PC

SNAP-3PC

CANPRO

(f) Seven Providers.

Fig. 2. Number of trial allocations and cancellation messages as a function of the
number of providers and concurrent negotiations.



0 200 400 600 800 1000 1200 1400
Think time (ms) to commit offers

20

40

60

80

100

120

140

T
o
ta

l 
N

u
m

b
e
r 

o
f 

C
a
n
ce

lla
ti

o
n
 M

e
ss

a
g
e
s

2PC SNAP-3PC CANPRO

Fig. 3. Number of cancellation messages for five RPs as a function of think time.

4 Related Work

Existing protocols on resource negotiation fall into following categories: Two-
Phase Commit (2PC), Three-Phase Commit (3PC), Order-based Deadline, and
Polling-based protocols. Most of these projects have as motivation the problem
of resource co-allocation for Grid Computing environments [10].

Kuo and Mckeown [7] presented a protocol for advance reservations and co-
allocation, which extends the 2PC protocol with support for cancellations that
may occur at any time. Park [11] introduced a decentralized protocol for allocat-
ing large-scale distributed resources, which is free from deadlocks and livelocks.
The protocol is based on the Order-based Deadlock Prevention Protocol ODP 2,
but with parallel requests in order to increase its efficiency. Another approach
to avoid deadlock and livelock is the exponential back-off mechanism [6].

Takefusa et al. [12] developed a 2PC-based protocol that uses polling from the
client to the server. Maclaren et al. [8] introduced a system called HARC (Highly-
Available Robust Co-allocator), which uses 3PC protocol based on Paxos consen-
sus algorithm [4] and focuses on fault tolerance aspects. Azougagh et al. [1] intro-
duced the Availability Check Technique (ACT) to reduce the conflicts during the
process of resource co-allocation. Requests wait for updates from providers until
they fulfill their requirements. The main difference of ACT and CANPRO is that
in the former, users are not aware about possible conflicts during negotiation,
therefore it cannot optimize their resource selection decisions.

Czajkowski et al. [3] proposed the Service Negotiation and Acquisition Proto-
col (SNAP), which aims at managing access to and use of distributed computing
resources by means of Service Level Agreements (SLAs). The protocol is not
optimized to work with out-of-date information on resource availability. In order
to solve this problem, Haji et al. [5] developed a 3PC protocol for SNAP-based
brokers. Its key feature is the use of probes, which are signals sent from the
providers to the candidates interested in the same resources to be aware of re-
source status’ changes. Different from Haji et al.’s protocol, CANPRO notifies
users on other concurrent negotiations, which is before the status’ changes, so
users can select resources with lower chances of being taken by other users.



5 Concluding Remarks

This paper presented CANPRO, a conflict-aware protocol for negotiation of
Cloud resources and services. With CANPRO, users can have higher thinking
time to commit requests and network communication can have higher latency.
This is achieved by allowing users to be aware that there are other concurrent
users negotiating for the same resources. With this conflict information in hands,
users can select resources/providers with lower probability of having requests
rejected. Based on experimental results, CANPRO is able to reduce cancellation
messages when there are concurrent negotiations compared to 2PC and SNAP-
3PC protocols. We observed that it is quite frequent to have situations where
users base their resource selection decisions on out-of-date information, and a
conflict-aware protocol, in this case, CANPRO, is an important tool to handle
this problem. CANPRO could also be used for other scenarios such as booking of
air planes, cars, health services, and scheduling of people and rooms for meetings.

References

1. Azougagh, D., Yu, J.L., Kim, J.S., Maeng, S.R.: Resource co-allocation: A com-
plementary technique that enhances performance in grid computing environment.
In: Proceedings of ICPADS (2005)

2. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Computing Surveys 13(2), 185–221 (1981)

3. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Proceedings of JSSPP (2002)

4. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Transactions on
Database Systems 31(1), 133–160 (2006)

5. Haji, M.H., Gourlay, I., Djemame, K., Dew, P.M.: A SNAP-based community
resource broker using a three-phase commit protocol: A performance study. The
Computer Journal 48(3), 333–346 (2005)

6. Jardine, J., Snell, Q., Clement, M.J.: Livelock avoidance for meta-schedulers. In:
Proceedings of HPDC (2001)

7. Kuo, D., Mckeown, M.: Advance reservation and co-allocation protocol for grid
computing. In: Proceedings of e-Science’05 (2005)

8. Maclaren, J., Keown, M.M., Pickles, S.: Co-allocation, fault tolerance and grid
computing. In: Proceedings of the UK e-Science All Hands Meeting (2006)

9. Netto, M.A.S., Buyya, R.: Offer-based scheduling of deadline-constrained bag-of-
tasks applications for utility computing systems. In: Proceedings of HCW/IPDPS
(2009)

10. Netto, M.A.S., Buyya, R.: Resource co-allocation in grid computing environments.
In: Handbook of Research on P2P and Grid Systems for Service-Oriented Com-
puting: Models, Methodologies and Applications. IGI Global (2009)

11. Park, J.: A deadlock and livelock free protocol for decentralized internet resource
coallocation. IEEE Transactions on Systems, Man, and Cybernetics, Part A 34(1),
123–131 (2004)

12. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y., Sekiguchi, S.: GridARS: an
advance reservation-based grid co-allocation framework for distributed computing
and network resources. In: Proceedings of JSSPP (2007)


