Towards Autonomic Detection of SLA Violations in
Cloud Infrastructures

Vincent C. Emeakaroha®, Marco A. S. NettoP, Rodrigo N. Calheiros®,
Ivona Brandic?, Rajkumar Buyya®, César A. F. De Rose”

?Vienna University of Technology, Vienna, Austria
bFaculty of Informatics, Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
¢CLOUDS Laboratory, Department of Computer Science and Software Engineering, The
University of Melbourne, Australia

Abstract

Cloud computing has become a popular paradigm for implementing scalable
computing infrastructures provided on-demand on a case-by-case basis. Self-
manageable Cloud infrastructures are required in order to comply with users’
requirements defined by Service Level Agreements (SLAs) and to minimize
user interactions with the computing environment. Thus, adequate SLA
monitoring strategies and timely detection of possible SLA violations repre-
sent challenging research issues. This paper presents the Detecting SLA Vi-
olations infrastructure (DeSVi) architecture, sensing SLA violations through
sophisticated resource monitoring. Based on the user requests, DeSVi allo-
cates computing resources for a requested service and arranges its deploy-
ment on a virtualized environment. Resources are monitored using a novel
framework capable of mapping low-level resource metrics (e.g., host up and
down time) to user-defined SLAs (e.g., service availability). The detection of
possible SLA violations relies on the predefined service level objectives and
utilization of knowledge databases to manage and prevent such violations.
We evaluate the DeSVi architecture using two application scenarios: i) im-
age rendering applications based on ray-tracing; and ii) transactional web
applications based on the well-known TPC-W benchmark. These applica-
tions exhibit heterogeneous workloads for investigating optimal monitoring
interval of SLA parameters. The achieved results show that our architecture
is able to monitor and detect SLA violations. The architecture output also
provides a guideline on the appropriate monitoring intervals for applications
depending on their resource consumption behavior.

Preprint submitted to Future Generation Computer Systems April 28, 2011

Keywords: Service Level Agreement, Resource Monitoring, SLA Violation
Detection, SLA Enactment, Cloud Architecture

1. Introduction

Cloud computing represents a novel paradigm for the implementation of
scalable computing infrastructures combining concepts from virtualization,
distributed application design, Grid, and enterprise I'T management [1, 2, 3].
Service provisioning in the Cloud relies on Service Level Agreements (SLAs)
representing a contract signed between the customer and the service provider
including non-functional requirements of the service specified as Quality of
Service (QoS) [4, 5]. SLA considers obligations, service pricing, and penalties
in case of agreement violations.

Flexible and reliable management of SLA agreements is of paramount
importance for both Cloud providers and consumers. On the one hand,
prevention of SLA violations avoids penalties providers have to pay and on
the other hand, based on flexible and timely reactions to possible SLA vi-
olations, user interaction with the system can be minimized, which enables
Cloud computing to take roots as a flexible and reliable form of on-demand
computing.

Although, there is a large body of work considering development of flex-
ible and self-manageable Cloud computing infrastructures [6, 7, 8], there is
still a lack of adequate monitoring infrastructures able to predict possible
SLA violations. Most of the available monitoring systems rely either on Grid
9, 10] or service-oriented infrastructures [11], which are not directly compat-
ible to Clouds due to the difference of resource usage model, or due to heavily
network-oriented monitoring infrastructures [12|. In Grids [13] resources are
mostly owned by different individuals/enterprises, and in some cases, as desk-
top Grids for instance, resources are only available for usage when the owners
are not using them [14]. Therefore, resource availability varies much and this
impacts its usage for application provisioning, whereas in Cloud computing,
resources are owned by an enterprise (Cloud provider), provisioning them to
customers in a pay-as-you-go manner. Therefore, availability of resources is
more stable and resources can be provisioned on-demand. Hence, the mon-
itoring strategies used for detection of SLA violations in Grids cannot be
directly applied to Clouds.

Furthermore, another important aspect for the usage of SLAs is the re-
quired elasticity of Cloud infrastructures. Thus, SLAs are not only used to

provide guarantees to end user, they are also used by providers to efficiently
manage Cloud infrastructures, considering competing priorities like energy
efficiency and attainment of SLA agreements [15, 16] while delivering suffi-
cient elasticity. Moreover, SLAs are also recently used as part of novel Cloud
engineering models like Cloud federation [17, 18] where provider can in- or
outsource their infrastructure depending on the current load. Thus, since
SLA parameters are usually defined by Cloud providers and can comprise
various user-defined attributes, current monitoring infrastructures lack ap-
propriate solutions for adequate SLA monitoring. The first challenge is to
facilitate mapping of measured metrics by low level tools to application based
SLAs. The second challenge is to determine appropriate monitoring intervals
at the application level keeping the balance between the early detection of
possible SLA violations and system intrusiveness of the monitoring tools.

In this paper we present the novel concept for mapping low-level resource
metrics to high-level SLAs—LoM2HiS [19], where system metrics (e.g., sys-
tem up and down time) are translated to high-level SLAs (e.g., system avail-
ability). Thus, LoM2HiS facilitates efficient monitoring of Cloud infrastruc-
tures and early detection of possible SLA violations. Furthermore, LoM2HiS
framework enables user-driven mappings between the resource metric and
SLA parameters by utilizing mapping rules defined with Domain Specific
Languages (DSLs). However, determination of optimal measurement inter-
vals of low-level metrics and their translation to SLAs is still an open research
issue. Short measurement intervals may negatively affect the overall system
performance, whereas long measurement intervals may cause heavy SLA vi-
olations.

In order to assist Cloud providers in detecting SLA violations through
resource monitoring, we developed the DeSVi architecture [20]. This ar-
chitecture represents a core step towards achieving flexible and autonomic
SLA management. The main components of the DeSVi architecture are: (i)
the automatic VM deployer, (ii) application deployer, and (iii) the LoM2HiS
framework. Based on user requests, the automatic VM deployer allocates
necessary resources for the requested service and arranges its deployment
on a virtual machine (VM). After service deployment, LoM2HiS framework
monitors the VMs and translates the low-level metrics into high-level SLAs
using the specified mapping rules. To realize autonomic SLA management
DeSVi utilizes a knowledge database for the evaluation of the monitored
information in order to propose reactive actions in case of SLA violation
situations.

The main contributions of the paper are: (i) definition of the motiva-
tion scenario for the development of the architecture aimed at detecting SLA
violations, (ii) conceptual design of the DeSVi architecture for the predic-
tion of SLA violations, (iii) discussion of the implementation choices for the
DeSVi, and (iv) extensive evaluation of the architecture in a real computing
infrastructure using various SLA parameters and two Cloud applications: an
image rendering service based on POV-Ray' and the TPC-W transactional
web e-Commerce benchmark?.

The rest of this paper is organized as follows: Section 2 presents the
related work. Section 3 presents the architecture for the autonomic man-
agement of Cloud services and the motivating scenario for the development
of the DeSVi architecture. Section 4 introduces the DeSVi architecture. In
particular we discuss the automatic VM deployer, application deployer, and
the monitoring components. Section 5 discusses our implementation choices,
whereas Section 6 discusses experimental evaluation of the DeSVi architec-
ture. Section 7 presents our conclusions and describes future work.

2. Related Work

We classify related work into (i) resource monitoring [12, 21, 22], (ii) SLA
management including violation detection [23, 24, 25, 26, 27], and (iii) map-
ping techniques of monitored metrics to SLA parameters [11, 28]. Currently,
there is little work in the area of resource monitoring, low-level metrics map-
ping, and SLA violation detection in Cloud computing. Because of that, we
look into the related areas of Grid and Service-Oriented Architecture (SOA)
based systems.

Fu et al. [21] propose GridEye, a service-oriented monitoring system with
flexible architecture that is further equipped with an algorithm for prediction
of the overall resource performance characteristics. The authors discuss how
resources are monitored with their approach in Grid environment but they
consider neither SLA management nor low-level metric mapping. Gunter et
al. [12] present NetLogger, a distributed monitoring system, which can moni-
tor and collect information of networks. Applications invoke NetLogger’s API
to survey the overload before and after some request or operation. However,
it monitors only network resources. Wood et al. [22] developed a system,

http://www.povray.org
Zhttp://www.tpc.org/tpcu/

called Sandpiper, which automates the process of monitoring and detecting
hotspots and remapping/reconfiguring VMs whenever necessary. Their mon-
itoring system is reminiscent of our in terms of goal: avoid SLA violation.
Similar to our approach, Sandpiper uses thresholds to check whether SLAs
can be violated. However, it differs from our system by not considering the
mapping of low level metrics, such as CPU and memory, to high-level SLA
parameters, such as response time for SLA enactment.

Boniface et al. [23] discuss dynamic service provisioning using GRIA
SLAs. The authors describe provisioning of services based on agreed SLAs
and the management of the SLAs to avoid violations. Their approach consid-
ers only Grid environments and not Clouds. Moreover, they do not detail how
the low-level metric are monitored and mapped to high-level SLAs to enforce
the SLA objectives at runtime. Koller et al. [24] discuss autonomous QoS
management using a proxy-like approach. Their implementation is based on
WS-Agreement. Thereby, SLAs can be exploited to define certain QoS pa-
rameters that a service has to maintain during its interaction with a specific
customer. However, their approach is limited to Web services and does not
consider other applications types. Frutos et al. [25] discuss the main ap-
proach of the EU project BREIN [29] to develop a framework that extends
the characteristics of computational Grids by driving their usage inside new
target areas in the business domain for advanced SLA management. BREIN
applies SLA management to Grids, whereas we target SLA management in
Clouds. Dobson et al. [27] present a unified QoS ontology applicable to QoS-
based Web services selection, QoS monitoring, and QoS adaptation. However
they do not consider application deployment and provisioning strategies. Co-
muzzi et al. [26] define the process for SLA establishment adopted within
the EU project SLA@QSOI framework. The authors propose the architecture
for monitoring SLAs considering two requirements introduced by SLA es-
tablishment: the availability of historical data for evaluating SLA offers and
the assessment of the capability to monitor the terms in an SLA offer. But
they do not consider monitoring of low-level metrics and mapping them to
high-level SLA parameters for ensuring the SLA objectives.

Rosenberg et al. [28] deal with QoS attributes for Web services. They
identify important QoS attributes and their composition from resource met-
rics. They present mapping techniques for composing QoS attributes from
resource metrics to form SLA parameters for a specific domain. However,
they do not deal with monitoring of resource metrics. Bocciarelli et al. [11]
introduce a model-driven approach for integrating performance prediction

into service composition processes carried out by BPEL. In their approach,
service SLA parameters are composed from system metrics using mapping
techniques. Nevertheless, they consider neither resource metric monitoring
nor SLA violation detection.

To the best of our knowledge, none of the discussed approaches deals
with mapping of low-level resource metrics to high-level SLA parameters and
SLA violation detection at runtime, which are desirable features for enforcing
SLAs in Cloud-like environments.

3. Background and Motivation

The processes of service provisioning based on SLA and efficient man-
agement of resources in an autonomic manner have been identified as major
research challenges in Cloud environments [1, 30]. FoSII project (Founda-
tions of Self-governing Infrastructures) is developing models and concepts for
autonomic SLA management and enforcement in Clouds. FoSII components
manage the whole lifecycle of self-adaptable Cloud services [6] as explained
next.

SLA are used to guarantee customers a certain level of quality for their
services. In a situation where this level of quality is not met, the provider
pays penalties for the breach of contract. In order to save Cloud providers
from paying penalties and increase their profit, providers have to monitor the
current status or resource and check frequently whether the established SLAs
are violated. Thus, in order to facilitate appropriate monitoring of SLAs we
developed the Low Level Metrics to High Level SLA (LoM2HiS framework)
[19] that maps the low-level resource metrics to high-level SLA parameters
and detects SLA violations as well as future SLA violation threats so as to
react before actual SLA violations occur.

DeSVi architecture utilizes LoM2HiS framework to detect application
SLA objectives violations at runtime and extends FoSII with application
deployment component, virtual machine configuration and deployer compo-
nents.

3.1. FoSII Infrastructure Qverview

Figure 1 depicts the components of the FoSII infrastructure. There are
two core components of the FoSII infrastructure . The first part comprises
the monitoring aspect and it is intended to provide information to the second
part, which comprises the knowledge management aspect. As shown in Figure

1 Monitoring Phase

Knowledge
Management Phase

Traditional MAPE-K
phases

1

2

Infrastructure Resources

-

77 X Control loop

~<--=> Knowledge access ——» Qutput sensor values

- - = ¥ Input sensor values

Figure 1: FoSII Infrastructure Overview.

1, each FoSII service implements three interfaces: (i) negotiation interface
necessary for the establishment of SLA agreements, (ii) application manage-
ment interface necessary to start the application, upload data, and perform
similar management actions, and (iii) self-management interface necessary to
devise actions in order to prevent SLA violations.

The self-management interface shown in Figure 1 is implemented by each
Cloud service and specifies operations for sensing changes of the desired state
and for reacting to those changes [6]. The host monitor sensors continuously
monitor the infrastructure resource metrics (input sensor values arrow a in
Figure 1) and provide the autonomic manager with the current resource
status. The run-time monitor sensors sense future SLA violation threats
(input sensor values arrow b in Figure 1) based on resource usage experiences
and predefined threat thresholds.

In this paper we give a brief description of the knowledge management
component first, but our focus is on the LoM2HiS framework since it imple-
ments monitoring strategies relevant for the realization of the DeSVi archi-
tecture.

(
(App, 1),

(

((Incoming Bandwidth, 12.0),
(Outgoing Bandwidth, 20.0),
(Storage, 1200),
(Availability, 99.5),
(Running on PMs, 1)),
(Physical Machines, 20)

0 ~NO U WN -

= ©
o -

),
11. "Increase Incoming Bandwidth share by 5",
12, (
13. ((Incoming Bandwidth, 12.6),
14. (Outgoing Bandwidth, 20.1),
15. (Storage, 1198),
16. (Availability, 99.5),
17. (Running on PMs, 1)),
18. (Physical Machines, 20)
19.),
20. 0.002
21.)

Figure 2: Case Based-Reasoning example.

3.2. Knowledge Databases

Knowledge management in FoSII is performed based on knowledge databases
and case-based reasoning [31] for proposing of reactive actions. Case-Based
Reasoning (CBR) is the process of solving problems based on past experi-
ence. It tries to solve a case (a formatted instance of a problem) by looking
for similar cases from the past and reusing the solutions of these cases to
solve the current one. In general a typical CBR cycle consists of the follow-
ing phases assuming that a new case has just been received: (i) retrieving
the most similar case or cases to the new one, (ii) reusing the information
and knowledge in the similar case(s) to solve the problem, (iii) revising the
proposed solution, and (iv) retaining the parts of this experience likely to be
useful for future problem solving.

Considering the SLA depicted in Table 1 and as shown in Figure 2, a com-
plete case consists of (a) the application ID being considered (line 2, Figure
2); (b) the initial case measured by the monitoring component and mapped
to the SLAs consisting of the SLA parameter values of the application and
global Cloud information like number of running virtual machines (lines 4-9);
(c) the executed action (line 11); (d) the resulting case measured some time
interval later (lines 13-18) as in (b); and (e) the resulting utility (line 20).

We distinguish between two working modes of the knowledge DB: active

Table 1: Sample SLA parameter objectives.

SLA Parameter Value

Incoming Bandwidth (IB) > 10 Mbit/s
Outgoing Bandwidth (OB) > 12 Mbit/s
Storage (St) > 1024 GB
Availability (Av) > 99%

and passive [31]. In the active mode, system states and SLA values are
periodically stored into the DB. Thus, based on the observed violations and
correlated system states, cases are obtained as input for the knowledge DB.
Furthermore, based on the utility functions, quality of the reactive actions
are evaluated and threat thresholds are generated.

However, definition of the measurement intervals in the active mode is
far from trivial. An important parameter to be considered is the period
on which resource metrics and SLA parameters are evaluated (e.g. every
two seconds or every two minutes). Too frequent measurement intervals
may negatively affect the overall system performance, whereas too infrequent
measurement intervals may cause heavy SLA violations. Even though the
knowledge database component is essential for the achievement of autonomic
and self-management behavior in the FoSII infrastructure, it does not relate
directly to the architectural components described in this paper, and so it is
not discussed further.

3.3. LoM2HiS Framework Overview

The LoM2HiS framework comprises two core components, namely host
monitor and run-time monitor. The former is responsible for monitoring low-
level resource metrics, whereas the latter is responsible for metric mapping
and SLA violation monitoring. In order to explain our mapping approach
we consider the Service Level Objectives (SLOs) shown in Table 1, including
incoming bandwidth, outgoing bandwidth, storage, and availability.

As shown in Figure 1, we distinguish between host monitor and run-
time monitor. Resources are monitored by the host monitor using arbitrary
monitoring tools such as Gmond from Ganglia project [32]. Low level re-
source metrics include downtime, uptime, and available storage. Based on
the predefined mapping rules stored in a database, monitored metrics are
periodically mapped to the high level SLA parameters. These mapping ideas

are similar to those in Grids where workflow processes are mapped to Grid
service in order to ensure their quality of service [33]. An example of an
SLA parameter is service availability Av, (as shown in Table 1), which is
calculated using the resource metrics downtime and uptime as defined by
the following mapping rule:

Av = (1 — downtime /uptime) x 100. (1)

The mapping rules are defined by the provider using appropriate Domain
Specific Languages (DSLs). DSLs are special-purpose languages that can
be tailored to a specific problem domain. SLA parameters are specified
based on the type of application in question. There are different types of
applications that can be grouped into domains based on the composition
of their SLA parameters. Thus, the use of DSL to describe the mapping
rules. These rules are used to compose, aggregate, or convert the low-level
metrics to form the high-level SLA parameter including mappings at different
complexity levels, e.g., 1 : n or n : m. The concept of detecting future SLA
violation threats is designed by defining a more restrictive threshold than the
SLA violation threshold known as threat threshold. Thus, calculated SLA
values are compared with the predefined threat threshold in order to react
before SLA violations happen. The generation of threat thresholds, described
in Section 3.2, is part of our ongoing work and includes sophisticated methods
for system state management.

As described in a previous work [19], we designed and implemented a com-
munication model for the LoM2HiS framework based on the Java Messaging
Service (JMS) API [34], which is a Java Message Oriented Middleware API
for sending messages between two or more clients. We use Apache ActiveMQ
[35] as a JMS provider that manages sessions and queues.

Having discussed the FoSII infrastructure, we now present in the next
section the DeSVi architecture, which extends the FoSII infrastructure with
two new components.

4. DeSVI Architecture

This section describes in detail the Detecting SLA Violation infrastructure—
DeSVi architecture, its components, and how the components interact with
one another (Figure 3). The proposed architecture is designed to handle the
complete service provisioning management lifecycle in Cloud environments.

10

Users

1 User service
request / response

Run-Time | Application
Monltor Deployer

AIIocate resource to
service & deploy

VM Deployer
LOMZHIS & Conflgurator

Front-end machine

3 Configure VM with
Serwce & deploy on pool

\Host Momtor\ [Host Monltor\
4 Monitor
—»Fallover<_ pool metrics

@@@/ @ @ J
Resource pool) Resource pool)

Figure 3: Overview of the DeSVi architecture and component’s interaction.

The service provisioning lifecycle includes activities such as service deploy-
ment, resource allocation to tasks, resource monitoring, and SLA violation
detection.

The topmost layer represents the users (customers) who place service pro-
visioning request through a defined application interface (step 1 in Figure 3)
to the Cloud provider. The provider handles the user service request based
on the negotiated and agreed SLAs with the user. The application deployer,
which is located on the same layer of the run-time monitor, allocates nec-
essary VM resources for the requested service and arranges its deployment
on the Cloud environment (step 2). VMs are not the only type of resources
in a Cloud environment but we do emphasize them in this work because it
is essential to our approach. The deployment of VMs and environmental
configurations are performed by AEF (Automated Emulation Framework)
8] (step 3). The host monitor observes the metrics of the resource pool com-
prising virtual machines and physical hosts (step 4). The relation between
the resource metrics (monitored by the host monitor) and SLAs (monitored
by the run-time monitor) is managed by the LoM2HiS framework.

The arrow termed Fuailover presented in Figure 3 indicates redundancy in
the monitoring mechanism. The host monitor is designed to use monitoring
agents as mentioned previously, which are embedded in each node in the
resource pool to monitor the metrics of the node. Such monitoring agents
broadcast their monitored values to the other agents in the same resource

11

pool, creating the possibility of accessing the whole resource pool status from
any node in the pool. The metric broadcasting mechanism is configurable
and can be deactivated if necessary but it can obviate the problem of a
bottleneck master node for accessing the monitored metrics of the resource
pool.

The DeSVi architecture is designed to monitor and detect SLA violation
in a single Cloud data center. To be able to manage a Cloud environment with
multiple data centers, we intend to apply a decentralization approach where
the proposed system will be installed on each data center. The LoM2HiS
component in our system is already designed with a scalable communication
mechanism, which can be easily utilized to allow communication between
data centers. In the following sections we explain all components of our
system in detail.

4.1. Application Deployer

The Application Deployer is responsible for managing the execution of
user applications; similar to brokers in the Grid literature [36, 37, 38]. How-
ever, compared to brokers, the Application Deployer has more knowledge
and control of the application tasks, being able to perform application-level
scheduling, for example, for parameter sweeping executions [39]. It provides
an application interface to the users and simplifies the processes of transfer-
ring application input data to each VM, starting the execution, and collecting
the results from the VMs to the front-end node. The mapping of applica-
tion tasks to VMs is performed by a scheduler located in the Application
Deployer. After deploying application on the VMs, the application deployer
stores the VM IDs, which is used by the monitoring component to identify
the VMs to monitor.

Figure 4 illustrates the main modules of the Application Deployer. The
task generatorintegrated with the application interface receives from the user
the application and its parameters, and at the same time the VM deployer
generates a machine file based on user requirements (step 1). The scheduler
uses this machine file and a list of all tasks (step 2) to map tasks to VMs
(step 3). Each VM contains an executor, which requests tasks from the task
manager whenever executors are idle and there are tasks to be executed,
thus allowing a dynamic load balancing (step 4). The task manager is also
responsible for triggering the task executions on VMs (step 5) and collecting
the results when tasks complete.

12

appllcatlon
input

ussn
Application Deployer

manage file

+ resource generate all map tasks transfer and 4

requlrements:_: tasks executions
Task Task
Generator Sty Manager -

2 73 2

y

e-ee

Deployer and
Configurator

execute tasks
FRONT-END NODE

Figure 4: Application Deployer.

cluster
description ~ ~

E\ VM Deployer and Configurator s
VMs location / s

USER and

pr pertles ./
8 Mapper |—> Deployer 1

VMs ~\ :
description N — Exp. s

Manager Manager VMM-dependent
disabled (disabled) VM deployment
st
_ FRONT-END NODE ~) [netructions

Figure 5: AEF Framework.

4.2. Automated Emulation Framework

The Automated Emulation Framework (AEF) was originally conceived
for automated configuration and execution of emulation experiments [8].
Nevertheless, it can also be used to set up arbitrary virtual environments
by not activating the emulated wide-area network support. In the latter case
AEF works as a virtualized infrastructure manager, similar to tools such as
OpenNebula [40], Oracle VM Manager [41], and OpenPEX [42].

Figure 5 depicts the architecture of the AEF framework. AEF input
consists of two configuration files providing XML description of both the
physical and virtual infrastructures. Using this information, AEF maps VMs
to physical hosts. AEF supports different algorithms for VM mapping. The
algorithm used in this work tries to reduce the number of hosts used by
consolidating VMs as long as one host has enough resources to host several
VMs. At the end of the mapping process, the resulting mapping is sent to
the Deployer, which creates VMs in the hosts accordingly.

13

1. Definition _
Agreed SLA Mapped of Mappings _]
Repository Metrics i ®
2. Service 3. Get SLA 7. Get/Store
Request/ Values SERVICE PROVIDER
Response Services 8. Notifications/
- - Thresholds
USER Run-time Monitor
Push 6 R
5. Measured Metrics - Resource
P } Status
Host Monitor
4. Raw Metrics 9. Execute
Infrastructure Resources Rules
(Hardware)

Knowledge component

Figure 6: LoM2HiS framework.

If network configuration is required in the environment (e.g. to create
virtual networks), the Network Manager component of AEF performs this
activity. Execution of the applications may be triggered either by the user, in
case of interactive applications, or directly by AEF in case of non-interactive
applications. In the experiments presented in this paper we opted for the
former approach where the execution is triggered by the application deployer.
VMs can be accessed via cluster front-end and then users can log in the
machine and interact with the application.

4.3. Monitoring

Monitoring in DeSVi is performed by the LoM2HiS framework, whose
architecture is presented in Figure 6. The run-time monitor is designed to
monitor the services based on the negotiated and agreed SLAs. After agreeing
on SLA terms, the service provider creates mapping rules for the LoM2HiS
mappings (step 1 in Figure 2) using Domain Specific Languages (DSLs) to
define specific rules for different application domains. An example rule is
presented in Equation 1. Once the customer requests the provisioning of an
agreed service (step 2), the run-time monitor loads the service SLA from
the agreed SLA repository (step 3). Service provisioning is based on the
infrastructure resources, which represent the hosts and network resources in
a data center for hosting Cloud services. The resource metrics are measured
by monitoring agents, and the measured raw metrics are accessed by the host
monitor (step 4). The host monitor extracts metric-value pairs from the raw
metrics and transmits them periodically to the run-time monitor (step 5) and
to the knowledge component (step 6) using our novel communication model
as presented in [19].

14

Upon receipt of the measured metrics, the run-time monitor maps the
low-level metrics based on predefined mapping rules to form an equivalence
of the agreed SLA objectives. The resulting mapping is stored in the mapped
metric repository (step 7), which also contains the predefined mapping rules.
The run-time monitor uses the mapped values to monitor the status of the
deployed services. In case future SLA violation threats occur, it notifies
(step 8) the knowledge component for preventative actions. The knowledge
component also receives the predefined threat thresholds (step 8) for possible
adjustments due to environmental changes at run-time. This component
works out an appropriate preventative action to avert future SLA violation
threats based on the resource status (step 6) and defined rules. Finally,
knowledge component’s decisions (e.g. assign more CPU to a virtual host)
are executed on the infrastructure resources (step 9).

5. Implementation Issues

In this section, we describe the implementation choices for each DeSVi
component. The implementation of the DeSVi components targets the fulfill-
ment of some fundamental Cloud requirements such as scalability, efficiency,
and reliability. To achieve these goals, we incorporated, whenever possible,
well-established and tested open source tools in the implementation. Results
presented in Section 6 where obtained with utilization of the components
presented in this section.

5.1. Application Deployer

The Application Deployer is written in Java and has as input a machine
file (in plain ASCII format), which contains the list of hostnames or IPs of
the VMs allocated to the user application and a task generator Java class
to split the work to be done into a lists of tasks. For a rendering applica-
tion, for instance, such a class includes a list of frames and the command to
render them. The division of tasks per VM is performed by the Application
Deployer’s scheduler as described in Section 4.1.

The Application Deployer uses scp, a standard tool for copying files among
multiple machines, in order to transfer the application-related files from the
front-end node to VMs responsible for executing tasks. The ssh command is
responsible for triggering an executor on each VM specified in the machine
file. Each executor requests tasks to be executed from the task manager.
During the user application execution, the Application Deployer generates

15

log files with the time required to execute each task. After tasks executions
are completed, the results are transferred back to the front-end node via
scp. This model was chosen because it provides a reliable mechanism for file
transferring (scp) together with persistent logging information that does not
depend on a DBMS to archive results. The overall result of the approach is a
reliable and lightweight mechanism for managing tasks that has an insignifi-
cant overhead on the platform, what is a requirement of a system aiming at
managing QoS of resources.

5.2. Virtual Machine Deployer and Configurator

The automated emulation framework used to deploy and configure the
virtual machines is implemented in Java. The framework inputs are XML
files describing the characteristics of both, the required virtual machines and
the cluster. Once these files are parsed, the Mapper component maps the
virtual machines to cluster nodes. During this stage, AEF ensures that the
resources required by all virtual machines assigned to a cluster node do not
exceed the node’s available resources.

Once the mapping is finished, the resulting configuration is applied in
the cluster by the VM Deployer component. Here, a parallel standalone
deployer, which is part of the AEF core, is used. This parallel deployer
module does not require external tools or systems for its operation, and it
works as follows. First, a base image file of the virtual machines is copied, via
scp, to each cluster node (as determined by the Mapper) simultaneously. This
image contains all the software and configuration required by the application.
After the base image is copied to each physical machine, it is replicated there
to achieve the number of virtual images intended to be deployed on this
specific physical machine. This step is also carried out simultaneously on
each physical machine.

The replicated images are configured with VM-specific settings, such as
hostname and static [P address. Finally, virtual machines are simultaneously
created on each host from each image file replicated in the previous step.
Furthermore, the deployer checks if an image is already present in a host
before performing the transfer. Thus, if the image is already present in the
host, the transfer process is skipped in such a host, saving bandwidth for the
transfer of images in other hosts. Moreover, if the replicated VM images on
each host are newer than the base image in use, the replication process is
skipped. AEF was used because it is lightweight and supports deployment
of systems based on Xen with negligible overhead. Moreover, its parallel

16

transfer of VMs and selective replication of images reduces the amount of
time required for building and deployment of the virtual environment.

5.83. LoM2HiS Components

The host monitor implementation uses the standalone Gmond module
from the Ganglia open source project [32] as monitoring agent, as it is a
widely used, open source monitoring software. We use it to monitor the low-
level resource metrics. The monitored metric results are presented in an XML
file and written to a predefined network socket. With our implemented Java
routine, the host monitor listens to this network socket where Gmond writes
the XML file containing the monitored metrics to access them. Furthermore,
we implemented an XML parser using the well-known open source SAX API
[43] to parse the XML file in order to extract the metric-value pairs. These
metric-value pairs are sent to the run-time monitor using our implemented
communication model.

Our communication model exploits the capabilities of the Java Messaging
Service API, which is a Java message oriented middleware for sending mes-
sage between two or more clients. In order to use JMS, there is a need for a
JMS provider that is capable of managing the sessions and queues. We used
the well-established open source Apache ActiveM(Q [35] for this purpose.

The run-time monitor implementation passes the received metric-value
pairs into ESPER engine [44], which provides a filter to remove identical
monitored values so that only changed values between measurements are
delivered for further processing. This strategy drastically reduces the number
of messages processed in the run-time monitor. The received metric-value
pairs are stored in MySQL DB from where the mapping routine accesses
them and applies the appropriate mappings. The agreed service SLA is also
stored in the same DB accessible to the run-time monitor. Furthermore, we
implemented a Java routine that checks for SLA violations by comparing the
mapped SLA against the agreed service level objectives.

6. Evaluation

This section discusses the evaluation of our approach using two use-case
scenarios. The use-case scenarios represent the most dominant application
domains provisioned in Clouds today, namely (i) high performance comput-
ing applications, which include image processing and scientific simulations;

17

and (ii) transactional applications, which include web applications, social net-
work sites, and media sites. The first use-case scenario comprises three types
of ray-tracing applications based on POV-Ray, and the second one comprises
executions of TPC-W, which is a well-known web application benchmark
that simulates a web server for on-line shopping. The goal of our evalua-
tion is to determine the efficiency of the proposed architecture in detecting
SLA violations at runtime and, based on its output, suggest optimal mea-
surement intervals for monitoring applications considering the application
resource consumption behavior.

Section 6.1 describes the experimental environment setup. Next, Section
6.2 presents the definition of a cost function, which is used to analyze the
achieved results of the two use-case scenarios. Sections 6.3 and 6.4 respec-
tively discuss the two experimental use-case scenarios including their achieved
results, the results analysis and the derived conclusions of the results.

6.1. Experimental Environment

Our basic Cloud experimental testbed is shown in Table 2. The table
shows the resource capacities of the physical and the virtual machines being
used in our experimental testbed. We use Xen virtualization technology in
the testbed, precisely we run Xen 3.4.0 on top of Oracle Virtual Machine
(OVM) server.

Table 2: Cloud Environment Resource Setup Composed of 36 Virtual Machines.
Machine Type = Physical Machine

OS CPU Cores Memory Storage
OVM Server AMD Opteron 2 GHz 2 8 GB 250 GB

Machine Type = Virtual Machine

OS CPU Cores Memory Storage
Linux/Ubuntu AMD Opteron 2 GHz 1 1024 MB 5 GB

We have in total nine physical machines and, based on the resource ca-
pacities presented in Table 2, we host 4 VMs on each physical machine.
AEF deploys the VMs onto the physical hosts, thus creating a virtualized
Cloud environment with up to 36 computing nodes capable of provisioning
resources to applications and one front-end node responsible for management
activities.

The front-end node serves as the control entity. It runs the automated
emulation framework, the application deployer, and the LoM2HiS framework,

18

which are the core components of the DeSVi architecture. The first two
components are the supporting blocks of the experiments, whereas the third
component is the main responsible for the results obtained in this section.
Nevertheless, their integration is required in order to enable the experiments.
We use this virtualized environment to evaluate the two use-case scenarios
presented in the rest of this section.

6.2. Cost Function Definition

To suggest an optimal measurement interval for detecting applications’
SLA objectives violations at runtime, we discuss the following two determin-
ing factors i) cost of making measurements; and ii) the cost of missing SLA
violations. The acceptable trade-off between these two factors defines the
optimal measurement interval.

Using these two factors and other parameters we define a cost function (C)
based on which we can derive an optimal measurement interval. The ideas
of defining this cost functions are derived from utility functions discussed by
Lee et al. [45]. Equation 2 presents the cost function.

C = p*Ch+ > a(y)*C, (2)

Ye{cpu,memory,storage}

where p is the number of measurements, C,, is the cost of measurement, a (1)
is the number of undetected SLA violations, and C, is the cost of missing
an SLA violation. The number of undetected SLA violations are determined
based on the results of the reference measurement interval, which is assumed
to be an interval capturing all the violations of an application SLA objectives.

This cost function now forms the basis for analyzing the achieved results
of our two use-case scenarios in the later sections. Regarding the two deter-
mining factors, we explain for each use-case scenario how we obtained these
cost values.

6.3. Image Rendering Application Use-Case

We developed an image rendering application based on the Persistence
of Vision Raytracer (POV-Ray), which is a ray tracing program available
for several computing platforms. In order to achieve heterogeneous load in
this use-case scenario, we experiment with three POV-Ray workloads, each
one with a different characteristic of time for rendering frames, as described
below and illustrated in Figures 7 and 8:

19

(a) Fish. 7 . (c) Vase.

Figure 7: Example of images for each of the three animations.

©
0

80y

~
T - N
o © © o
[C =]
o © o

w
=

w

o

Execution Time (s)
s
Execution Time (s)
N
o

N
o

Execution Time (s)

N
o

=
=
o

=

=]

0 50 100 150 200

2

50 100 150 200

50 100 150 200
Frame ID Frame ID Frame ID

(a) Fish. (b) Box. (c) Vase.

Figure 8: Behavior of execution time for each POV-Ray application.

e Fish: rotation of a fish on water. Time for rendering frames is variable.

e Box: approximation of a camera to an open box with objects inside.
Time for rendering frames increases during execution.

e Vase: rotation of a vase with mirrors around. Time for processing
different frames is constant.

Three SLA documents are specified for the three POV-Ray applications.
The SLA documents specify the level of Quality of Service (QoS) that should
be guaranteed for each application during its execution. Table 3 presents the
SLA objective thresholds for each of the applications. It should be noted that
we are not addressing the issues of SLA definition and formalization, rather
we specify SLA parameters relevant to the Cloud provider in order to manage
the users’ applications. These SLA objective thresholds are defined based on
historical data and experiences with these specific type of applications in
terms of resource consumption [46]. With the historical data, the Cloud
provider can determine the amount and type of resources the application

20

requires. Thus, the provider can make better resource provisioning plan for
the applications.

Based on these SLA objective thresholds, the applications are monitored
to detect SLA violations. These violations may happen either because of
unforeseen resource consumptions or because SLAs are negotiated per ap-
plication and not per allocated VM considering the fact that the service
provider may provision different application requests on the same VM.

Table 3: SLA objective thresholds for the three POV-Ray applications.

SLA Parameter Fish Box Vase
CPU 98.5 % 97.5 % 99.3 %
Memory 1.28 GB 1.32 GB 1.31GB
Storage 2.16 GB 2.169 GB 2.157 GB

Figure 9 presents the evaluation configurations for the POV-Ray appli-
cations. We instantiate 36 virtual machines that execute POV-Ray frames
submitted via Application Deployer. The virtual machines are continuously
monitored by Gmond. Thus, LoM2HiS has access to resource utilization dur-
ing execution of the applications. Similarly, information about the time taken
to render each frame in each virtual machine is also available to LoM2HiS.
This information is generated by the application itself and is sent to a loca-
tion where LoM2HiS can read it. As described in Figure 9, users supply the
QoS requirements in terms of SLOs (step 1 in Figure 9). At the same time
the images with the POV-Ray applications and input data (frames) can be
uploaded to the front-end node. Based on the current system status, SLA
negotiator establishes an SLA with the user. Description of the negotiation
process and components is out of scope of this paper and is discussed by
Brandic et al. [6]. Thereafter, VM deployer starts configuration and alloca-
tion of the required VMs whereas application deployer maps the tasks to the
appropriate VMs (step 3). In step 4 the application execution is triggered.

6.53.1. Image Rendering Application Use-Case Results

We defined and used seven measurement intervals to monitor the POV-
Ray applications during their executions. Table 4 shows the measurement
intervals and the number of measurements made in each interval. The appli-
cations run for about 30 minutes for each measurement interval.

The 10 seconds measurement interval is a reference interval meaning the

21

establish SLA
upload frame 2 +

] descriptions allocate resources CLOUD EROVIDER

+ and map tasks I

QoS requirements /m\“
USERS > — |
SLA Manager s
8 -l‘ LoM2HiS
= NN I GRS ; Y s s

g -l N~ Application
XEN Hypervisor

COMPUTING NODE

User Application
(e.g. POVRAY)

Resource Monitor

(gmond)

Deployer
download

video v o—)
.‘ 4 VM process monitor
Deployer and frames resources
Configurator
@@

Figure 9: Pov-Ray Evaluation Configuration.

Table 4: Measurement Intervals.

Intervals 10s 15s 20s 25s 30s 60s 120s
Nr. of Measurements 180 120 90 72 60 30 15

current interval used by the provider to monitor application executions on the
Cloud resources. Its results show the present situation of the Cloud provider.

Figure 10 presents the achieved results of the three POV-Ray applica-
tions with varying characteristics in terms of frame rendering as explained
in Section 6.3. We use the 36 virtual machines in our testbed to simulta-
neously execute the POV-Ray frames. The load-balancer integrated in the
application deployer ensures that the frame executions are balanced among
the virtual machines.

The LoMZ2HiS framework monitors the resource usage of each virtual
machine to determine if the SLA objectives are met and reports violations
otherwise. Since the load-balancer balances the execution of frames among
the virtual machines, we plot in Figure 10 the average numbers of viola-
tions encountered in the testbed for each application with each measurement
interval. We analyze and interpret these results in the next section.

6.3.2. Image Rendering Application Use-Case Results Analysis

POV-Ray results presented in Figure 10 show that as the measurement
interval increases, the number of detected SLA violation decreases. This
effect is straightforward because with larger measurement interval the system
misses detection of some SLA violations. The figures also reflect the resource
consumption behavior of the POV-Ray applications.

22

2] w
= . =
2 Fish Pov-Ray Result S Box Pov-Ray Result
S 200 : : : : : S 200 : : .
= CPU S CPU
; Memory § Memory
150 | Storage e j 150 b Storage
< <
7% 7
< 100 ¢ 2 100 ¢
o 50¢ 2 50t
8) 8 mvl\\!\\\\\\\\\\\\\\\\\\\\\\m\m“.
e 0 ‘ ‘ ‘ - 0 ‘ ‘ ‘ ‘ ‘ ‘
© 20 40 60 80 100 120 e 0 20 40 60 80 100 120
St St
Z. Measurements Intervals (sec) Z. Measurements Intervals (sec)

(a) Fish. (b) Box.
g
3 Vase Pov-Ray Result
= 200 ‘ :
.8 .
>
150 t %
<
7
< 100
8
8 50
)
&) o
= 0 e
c 0O 20 40 60 80 100 120
Z Measurements Intervals (sec)

(¢) Vase.
Figure 10: POV-Ray Experimentation Results.

We carried out an intrusiveness test in our testbed to find out the pro-
cessing overhead of a measurement. This will determine the cost of taking
measurements. Measurement processing includes monitoring of all the vir-
tual machines, processing of monitored data, mapping of low-level metrics
to high-level SLA, and evaluation of SLA objectives. Figure 11 presents the
achieved result.

Figure 11 shows the amount of overhead found in the system and how
they decrease as the measurement intervals increases. This means high cost
for measurements with small intervals and low cost for measurement with
larger intervals.

The cost of missing SLA violation detection is an economic factor, which
depends on the SLA penalty cost agreed for the specific application and

23

Measurement Intrusiveness graph

250
200 |
2 om0
§ 100 +
S
50 |
0 S .

0 20 40 60 80 100 120

Measurements Intervals (sec)
Figure 11: Intrusiveness Test Results.

the effects the violation will have to the provider for example in terms of
reputation or trust issues.

By applying the cost function presented in Section 6.2 to the achieved
results of Figure 10, with a measurement cost of $0.6 and missing violation
cost of $0.25, we achieve the monitoring costs presented in Figure 12. These
cost values are example values for our experimental setup. They neither
represents nor suggests any standard values. The approach used here is
derived from the cost function approaches presented in literature [47, 48].

It should be noted about the results of Figure 12 that the reference mea-
surement is assumed to capture all SLA violations for each application, thus
it only incurs measurement cost. From the figures, it can be noticed on the
one hand that the lower the number of measurements, the smaller the mea-
surement cost and on the other hand, the higher the number of undetected
SLA violations, the higher the cost of missing violations. This implies that to
keep the detection cost low, the number of undetected SLA violations must
be low.

Considering the total cost of monitoring the fish POV-Ray application
in Figure 12(a), it can be seen that the reference measurement is not the
cheapest although it does not incur any cost of missing SLA violation detec-
tion. In this case the 60-second interval is the cheapest and in our opinion
the most suited measurement interval for this application. In the case of box
POV-Ray application the total cost of monitoring, as depicted graphically

24

Mesurement Cost M Missing Violation Detection Cost Mesurement Cost B Missing Violation Detection Cost

120 140
100 120
0 L I 100 i
= 2 50 -
Pt N |
é 60 é 60 | B
40 1 — | B | 40 EE B ==
B B B B B | ot
0 0
10s 15s 20s 25s 30s 60s 120s 10s 15s 20s 25s 30s 60s 120s
Measurement Intervals Measurement Intervals
(a) Fish. (b) Box.

Mesurement Cost B Missing Violation Detection Cost

140
120

100 1+

80 +— - l l

60 T —1 I I
0+ ——
0+ — — — — -

10s 15s 20s 25s 30s 60s 120s

Cost ($)

Measurement Intervals

(¢) Vase.
Figure 12: POV-Ray application cost relations.

in Figure 12(b), indicates that the lowest cost is incurred with the 25-second
measurement interval. Thus we conclude that this interval is best suited
for this application. Also from Figure 12(c), it is clear that the reference
measurement by far is not the optimal measurement interval for the vase
POV-Ray application. Thus, from the experiments the 30-second measure-
ment interval is considered best suited for this application group.

Based on our experiments, it is observed that there is no best suited mea-
surement interval for all applications. Depending on how steady the resource
consumption is, the monitoring infrastructure requires different measurement
intervals. Notwithstanding, definition of these intervals is important to al-
low estimation of impact of missed violations in applications. Note that the
architecture can be configured to work with different intervals. In this case,
specification of the measurement frequencies depends on policies agreed by
customer and Cloud providers.

25

TPCW

Manage Server

Experiment
FRONT-END NODE

Access
objects

SLA Manager
LoM2HiS

Application
Deployer

> 8 LI) @
TPCW
Clients

VM
Deployer and
Configurator

@@

i
SN
@000

)

Figure 13: Web Application Evaluation Configuration.

6.4. Web Application Use-Case

As a web application, we performed experiments using the Java imple-
mentation® of the TPC-W Benchmark [49]. This application simulates the
activties of a business oriented transactional web server. The workload used
in the server exercises system components related to several issues com-
monly found in web environments, such as multiple on-line browser sessions,
dynamic page generation with database access and update, transaction in-
tegrity, and simultaneous execution of multiple transaction types.

We configured TPC-W to run on the 36 VMs in our setup environment.
One VM is used as the server and the other 35 VMs are used as clients as
shown in Figure 13. The clients generate requests that are handled on the
server. We use the LoM2HiS framework to monitor the server and to detect
SLA violations.

The quality of service requirement of the web application depends on
the amount of available CPU and memory resources. Thus, we define two
SLA objectives for these resource parameters to ensure the performance of
the application during its execution. The values of the SLA objectives are
learned based on historical data and sample runs to examine the behavior
of the application in terms of resource consumptions. For the CPU, we set
a 10% threshold and for memory we set a 12% threshold. Utilization of
resources above these thresholds indicates an SLA violation situation.

3http://tpcw.deadpixel.de/

26

6.4.1. Web Application Use-Case Results

The resource usage of the web application server in processing the re-
quests generated by the clients is monitored by the LoM2HiS framework in
order to detect and report the SLA violations. Like in the case of POV-Ray
application, we experiment here with five measurement intervals to monitor
the SLAs during the application execution. The web application is allowed
to run for a total length of seven minutes. In this case, small measurement
intervals are chosen considering the fact that web application behavior can
change drastically within a period of seconds. Table 5 presents the achieved
results.

Table 5: TPCW Experimentation Results.
Intervals 5s 10s 15s 20s 30s
Nr. of Measurements 84 42 28 21 14
Nr. of CPU violations detected 77 26 14 12 7
Nr. of Memory violations detected 75 41 26 19 12

Table 5 shows the number of measurements made with each interval and
the number of SLA violations detected for the CPU and memory resources.
Based on these results, we apply our cost function in the next section (result
analysis) to determine the optimal measurement interval.

6.4.2. Web Application Use-Case Results Analysis

As presented in Table 5, the number of SLA violations detected decreases
as the measurement interval time grows. This is an expected logical be-
haviour. Therefore, to find the optimal measurement interval we apply the
cost function of Equation 2 on the achieved results.

In this use-case scenario, the cost of measurement is low considering the
experimental setup shown in Figure 13. With the setup, the processing of
client requests are performed on the TPC-W server, thus only this server is
monitored to detect SLA violations. Therefore, there is a low overhead in
monitoring this single machine. On the other side, the cost of missing SLA
violation is high because the web application performance degrades very fast
once the SLA objectives are violated, which can frustrate a customer waiting
for a response of the application. e.g., waiting for a browser to load.

On the basis that the cost of measurement is low and the cost of missing
SLA violation detection is high, we use $0.15 as the measurement cost and

27

$0.30 as the cost of missing violation. Note that we use the 5s measurement
interval as a reference interval, which means that it detects all SLA violation
and acts as the current default measurement interval. Thus, it incurs only
measurement cost and no cost for missing SLA violation detection. When
these values are applied in the cost function, results depicted in Figure 14
are achieved.

Measurement Cost B Missing Violation Detection Cost
50
40

30
20
10 1T

0

Cost (S)

5s 10s 15s 20s 30s

Measurement Intervals
Figure 14: Web application cost relations.

The results show the total cost incurred by each of the measurement
intervals. The cost of missing SLA violation detection increases as the mea-
surement interval increases. This is caused by the fact that the larger the
measurement interval, the lower the number of measurements made and the
higher the number of missed SLA violations. Failure to detect SLA viola-
tions means costly SLA penalties for the provider and poor performance of
the application.

Therefore, from our experiments we could not find a larger better mea-
surement interval than the 5 seconds reference measurement interval, what
confirms our assumptions that web applications are highly sensitive and
should be monitored at small interval to ensure their quality of service. Fur-
thermore, there can be a surge in clients request of a web application within
short period of time, thus the monitoring mechanism should be able to detect
such situations.

The whole set of experiments presented in this section clearly demonstrate
the need for fine-tunning of monitoring systems to the specific requirements
of Cloud applications. However, different applications have needs for different
measurement intervals, and even though some applications are more stable

28

than other in terms of resource requirements, defining methods for finding the
optimal measurement interval of each application is a non-trivial problem,
and an interesting research topic that we plan to address in the future.

7. Conclusion and Future Work

Flexible and reliable management of SLA agreements represents an open
research issue in Cloud computing. Advantages of flexible and reliable Cloud
infrastructures are manifold. For example, prevention of SLA violations
avoids unnecessary penalties providers have to pay in case of violations.
Moreover, based on flexible and timely reactions to possible SLA viola-
tions, interactions with users can be minimized. In this paper we presented
DeSVi—the novel architecture for monitoring and detecting SLA violations
in Cloud computing infrastructures. The main components of our architec-
ture are the automatic VM deployer, responsible for the allocation of re-
sources and for mapping of tasks, application deployer, responsible for the
execution of user applications, and LoM2HiS framework, which monitors the
execution of the applications and translates low-level metrics into high-level
SLAs.

We evaluated our system using two use-case scenarios consisting of an
image rendering application and a transactional application. In the first use-
case scenario we use a heterogeneous workload of three POV-Ray applica-
tions. From our experiments with these applications, we observed that there
is no particular optimal suited measurement interval for all applications. It
is easier to identify the intervals for applications with steady resource con-
sumption, such as the ‘vase’ POV-Ray animation. However, applications
with variable resource consumption require dynamic measurement intervals.

The experiments of the second use-case scenario use workloads generated
by the TPC-W benchmark. Based on the experimental results, we noticed
that smaller measurement intervals are preferable than larger ones for this
application domain due to their sensitive nature and failure intolerance.

The currently proposed system is capable of monitoring a single Cloud
data center. In the future, we will extend it with the capability to manage
a Cloud environment with multiple data centers. Thus, we will apply a
decentralization approach whereby the proposed system is installed on each
data center. The scalable communication mechanism realized in LoM2HiS
framework will be used to allow communication between data centers.

29

Based on our investigation of optimal measurement intervals, we will in-
corporate into DeSVi a knowledge database to propose reactive actions to
prevent or correct the SLA violation situations. Knowledge of optimal mea-
surement intervals allows best reactive actions, which contributes to our vi-
sion of flexible and reliable on-demand computing via fully autonomic Cloud
infrastructures.

Acknowledgments

This work is supported by the Vienna Science and Technology Fund
(WWTF) under grant agreement ICT08-018 Foundations of Self-governing
ICT Infrastructures (FoSII) and Australian Research Council. This paper is
a substantially extended version of a CloudComp 2010 paper [20]. The exper-
iments were performed in the High Performance Computing Lab at Catholic
University of Rio Grande do Sul (LAD-PUCRS) Brazil.

References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, 1. Brandic, Cloud com-
puting and emerging I'T platforms: Vision, hype, and reality for deliver-
ing computing as the 5th utility, Future Generation Computer Systems
25 (6) (2009) 599-616.

[2] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, L. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, F. Galan, The RESERVOIR model and architecture for
open federated cloud computing, IBM Journal of Research and Devel-
opment 53 (4) (2009) Paper 4.

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, D. Zagorodnov, The Eucalyptus open-source cloud-computing sys-
tem, in: Proceedings of the 9th International Symposium on Cluster
Computing and the Grid (CCGRID’09), 2009.

[4] P. Balakrishnan, T. S. Somasundaram, SLA enabled CARE resource
broker, Future Generation Computer Systems 27 (3) (2011) 265 — 279.

[5] A. Litke, K. Konstanteli, V. Andronikou, S. Chatzis, T. Varvarigou,
Managing service level agreement contracts in OGSA-based grids, Fu-
ture Generation Computer Systems 24 (4) (2008) 245 — 258.

30

[6]

[7]

8]

I. Brandic, Towards self-manageable cloud services, in: Proceedings of
the 33rd Annual IEEE International Computer Software and Applica-
tions Conference (COMPSAC’09), 2009.

FoSII, Foundations of self-governing infrastructures.
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html.

R. N. Calheiros, R. Buyya, C. A. F. De Rose, Building an automated
and self-configurable emulation testbed for grid applications, Software:
Practice and Experience 40 (5) (2010) 405-429.

W.-C. Chung, R.-S. Chang, A new mechanism for resource monitoring
in grid computing, Future Generation Computer Systems 25 (1) (2009)
1-7.

S. Reyes, C. Muoz-Caro, A. Nio, R. Sirvent, R. Badia, Monitoring and
steering grid applications with grid superscalar, Future Generation Com-
puter Systems 26 (4) (2010) 645 — 653.

A. D’Ambrogio, P. Bocciarelli, A model-driven approach to describe and
predict the performance of composite services, in: Proceedings of the
6th International Workshop on Software and Performance (WOSP’07),
2007.

D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee, Netlogger: A
toolkit for distributed system performance analysis, in: Proceedings of

the 8th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS’00), 2000.

D. Kondo, G. Fedak, F. Cappello, A. A. Chien, H. Casanova, Character-
izing resource availability in enterprise desktop grids, Future Generation
Computer Systems 23 (7) (2007) 888 — 903.

C. Li, L. Li, Competitive proportional resource allocation policy for
computational grid, Future Generation Computer Systems 20 (6) (2004)
1041 — 1054.

J. L. Berral, I. Goiri, R. Nou, F. Julia, J. Guitart, R. Gavalda, J. Torres,
Towards energy-aware scheduling in data centers using machine learning,
in: 1st International Conference on Energy-Efficiency Computing and
Networking, Passau, Germany, 2010.

31

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Beloglazov, R. Buyya, Energy efficient resource management in virtu-
alized cloud data centers, in: Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CC-
GRID 10, IEEE Computer Society, Washington, DC, USA, 2010, pp.
826-831.

A. Celesti, F. Tusa, M. Villari, A. Puliafito, How to enhance cloud ar-
chitectures to enable cross-federation, in: IEEE 3rd International Con-
ference on Cloud Computing (CLOUD), 2010, 2010, pp. 337 —345.

A. Celesti, F. Tusa, M. Villari, A. Puliafito, Three-phase cross-cloud fed-
eration model: The cloud sso authentication, in: Second International
Conference on Advances in Future Internet (AFIN), 2010, 2010, pp. 94
—-101.

V. C. Emeakaroha, I. Brandic, M. Maurer, S. Dustdar, Low level met-
rics to high level SLAs - LoM2HiS framework: Bridging the gap between
monitored metrics and SLA parameters in cloud environments, in: Pro-

ceedings of the High Performance Computing and Simulation Conference
(HPCS’10), 2010.

V. C. Emeakaroha, R. N. Calheiros, M. A. S. Netto, I. Brandic, C. A. F.
De Rose, DeSVi: An architecture for detecting SLA violations in cloud
computing infrastructures, in: Proceedings of the 2nd International
ICST Conference on Cloud Computing (CloudComp’10), 2010.

W. Fu, Q. Huang, GridEye: A service-oriented grid monitoring system
with improved forecasting algorithm, in: Proceedings of the 5th Inter-
national Conference on Grid and Cooperative Computing Workshops
(GCCW’06), 2006.

T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif, Sandpiper:
Black-box and gray-box resource management for virtual machines,
Computer Networks 53 (17) (2009) 2923-2938.

M. Boniface, S. C. Phillips, A. Sanchez-Macian, M. Surridge, Dynamic
service provisioning using GRIA SLAs, in: Proceedings of the 5th Inter-
national Workshops on Service-Oriented Computing (ICSOC’07), 2007.

B. Koller, L. Schubert, Towards autonomous SLA management using a
proxy-like approach, Multiagent Grid Systems 3 (3) (2007) 313-325.

32

[25]

[26]

[27]

28]

[29]

[30]

[31]

H. M. Frutos, I. Kotsiopoulos, BREIN: Business objective driven re-
liable and intelligent grids for real business, International Journal of
Interoperability in Business Information Systems 3 (1) (2009) 39-42.

M. Comuzzi, C. Kotsokalis, G. Spanoudkis, R. Yahyapour, Establishing
and monitoring SLAs in complex service based systems, in: Proceedings
of the 7th International Conference on Web Services (ICWS’09), 2009.

G. Dobson, A. Sanchez-Macian, Towards unified QoS/SLA ontologies,
in: Proceedings of the 2006 IEEE Services Computing Workshops
(SCW’06), 2006.

F. Rosenberg, C. Platzer, S. Dustdar, Bootstrapping performance and
dependability attributes of web services, in: Proceedings of the 4th In-
ternational Conference on Web Services (ICWS’06), 2006.

Brein, Business objective driven reliable and intelligent grids for real
business.
http://www.eu-brein.com/.

J. O. Kephart, D. M. Chess, The vision of autonomic computing, IEEE
Computer 36 (1) (2003) 41-50.

M. Maurer, I. Brandic, V. C. Emeakaroha, S. Dustdar, Towards knowl-
edge management in self-adaptable clouds, in: Proceedings of the 4th

International Workshop of Software Engineering for Adaptive Service-
Oriented Systems (SEASS’10), 2010.

M. L. Massie, B. N. Chun, D. E. Culler, The Ganglia distributed mon-
itoring system: Design, implementation and experience, Parallel Com-
puting 30 (7) (2004) 817-840.

D. Kyriazis, K. Tserpes, A. Menychtas, A. Litke, T. Varvarigou, An
innovative workflow mapping mechanism for grids in the frame of quality
of service, Future Generation Computer Systems 24 (6) (2008) 498 — 511.

JMS, Java messaging service, http://java.sun.com/products/jms/.

ActiveMQ, Messaging and integration pattern provider.
http://activemq.apache.org/.

33

[36]

[37]

[38]

[41]

[42]

[43]

[44]

[45]

[46]

E. Elmroth, J. Tordsson, A grid resource broker supporting advance
reservations and benchmark-based resource selection, in: Proceedings of
the Workshop on State-of-the-art in Scientific Computing (PARA’04),
2004.

D. Abramson, R. Buyya, J. Giddy, A computational economy for grid
computing and its implementation in the Nimrod-G resource broker,
Future Generation Computer Systems 18 (8) (2002) 1061-1074.

K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of
grid resource management systems for distributed computing, Software:
Practice and Experience 32 (2) (2002) 135-164.

H. Casanova, G. Obertelli, F. Berman, R. Wolski, The AppLeS parame-
ter sweep template: User-level middleware for the Grid, in: Proceedings
of the Supercomputing (SC’00), 2000.

B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Virtual infras-
tructure management in private and hybrid clouds, IEEE Internet Com-
puting 13 (5) (2009) 14-22.

Oracle, Oracle virtualization.
http://www.oracle.com/technologies/virtualization.

S. Venugopal, J. Broberg, R. Buyya, OpenPEX: An open provisioning
and execution system for virtual machines, in: Proceedings of the 17th
International Conference on Advanced Computing and Communications

(ADCOM’09), 2009.

SAX, Simple API for XML.
http://sax.sourceforge.net/.

ESPER, Event stream processing.
http://esper.codehaus.org/.

K. Lee, N. W. Paton, R. Sakellariou, A. A. F. Alvaro, Utility driven
adaptive worklow execution, in: Proceedings of the 9th International
Symposium on Cluster Computing and the Grid (CCGrid’09), 2009.

S. Seneviratne, D. C. Levy, Task profiling model for load profile predic-
tion, Future Generation Computer Systems 27 (3) (2011) 245 — 255.

34

[47] C. B. Lee, A. Snavely, On the user-scheduler dialogue: Studies of user-
provided runtime estimates and utility functions, International Journal
of High Performance Computer Applications 20 (4) (2006) 495-506.

48] C. S. Yeo, R. Buyya, Pricing for utility-driven resource management
and allocation in clusters, International Journal of High Performance
Computer Applications 21 (4) (2007) 405-418.

[49] D. Menascé, TPC-W: A benchmark for e-commerce, IEEE Internet
Computing 6 (3) (2002) 83-87.

35

