
Resource Co-allocation in
 Grid Computing Environments

Marco A. S. Netto and Rajkumar Buyya
The University of Melbourne, Australia

ABSTRACT

One of the promises of Grid Computing is to enable the execution of applications across multiple
sites. Several multi-site applications require simultaneous access to resources hosted on
autonomous domains; this problem is known as resource co-allocation. Projects working on
resource co-allocation face four major problems: distributed transactions, fault tolerance, inter-
site network overhead, and schedule optimization. Although resource co-allocation is
fundamental for Grid Computing, no survey has covered the current projects, solutions, and open
challenges on this topic. Therefore, in this chapter, we describe the challenges on resource co-
allocation, present the projects developed over the last decade, and classify them according to
their similar characteristics. In addition, we discuss open research issues and trends such as
negotiation, advance reservations, and rescheduling of multi-site applications.

INTRODUCTION
One of the promises of Grid Computing is to enable the execution of applications across multiple
sites. Some of these applications require coordinated access to resources managed by autonomous
entities. This coordinated access is known as resource co-allocation. There are two main classes
of applications that require resource co-allocation: parallel applications with inter-process
communication, and workflow applications. Parallel applications with inter-process
communication require all resources to be available at the same time, whereas workflows
constitute the execution of tasks with precedence constraints, i.e. resources have to be available in
a certain order. Although both application classes require co-allocation, in the Grid computing
community, the term co-allocation usually refers to the simultaneous access to
resources hosted by autonomous providers (Czajkowski, Foster, & Kesselman, 1999).
The coordinated access to resources by tasks with precedence constraints is referred as
workflow scheduling (Yu & Buyya, 2005). In this work, we follow the Grid computing
community definition.

The two main reasons for executing applications on multiple sites are: (i) the
lack of special resources in a single administrative domain, such as devices for
generating data, visualization tools, and supercomputers; and (ii) reduce
response time of parallel applications by increasing the number of resources
(Czajkowski et al., 1998). However, there are other applications that require co-allocation.
Conference and multimedia users engaged in activities, such as scientific research, education,
commerce, and entertainment, require co-allocation of multiparty real-time communication
channels (Ferrari, Gupta, & Ventre, 1997; Xu, Nahrstedt, & Wichadakul, 2001). Data-intensive
applications use co-allocation to collect data from multiple sources in parallel (Vazhkudai, 2003;
Yang, Yang, Wang, Hsu, & Li, 2007). In addition, increasing the number of resources is a
requirement of large-scale applications demanding considerable amounts of memory, storage, and

processing power. Examples of these applications are semiconductor processing (Takemiya et al.,
2006) and computational fluid dynamics (Dong, Karniadakis, & Karonis, 2005).

Various projects have developed software systems with resource co-allocation support for large-
scale computing environments, such as TeraGrid, Distributed ASCI Supercomputer (DAS), and
Grid’5000. TeraGrid has deployed Generic Universal Remote (GUR) (Yoshimoto, Kovatch, &
Andrews, 2005) and Highly-Available Resource Co-allocator (HARC) (Maclaren, Keown, &
Pickles, 2006), the DAS project has developed KOALA (Mohamed & Epema, 2005), and
Grid’50001 has relied on the OAR(Grid) scheduler (Capit et al., 2005) to allow the execution of
applications requiring co-allocation. There are also projects dedicated to the management of
network links, such as G-lambda (Takefusa et al., 2006).

Although resource co-allocation is fundamental for Grid Computing, no survey has covered the
four major challenges in this field: distributed transactions, fault tolerance, inter-site network
overhead, and schedule optimization. Therefore, in this chapter, we describe the challenges on
resource co-allocation, present some of the efforts and projects developed over the last decade,
and classify them according to their similar characteristics. In addition, we discuss open research
issues and trends such as negotiation, advance reservations, and rescheduling of multi-site
applications.

BACKGROUND
Existing work on resource co-allocation have focused on four research problems: distributed
transactions, fault tolerance, inter-site network overhead, and schedule optimization. Most of the
projects we present in this chapter have considered at least two of these problems. Resource co-
allocation involves the interaction of multiple entities, namely clients and resource providers.
Multiple clients may ask for resources at the same time from the same providers. This situation
may generate deadlocks if the resource providers use a locking procedure; or livelock if there is a
timeout associated with the locks. Therefore, there has been research on protocols to handle
distributed transactions in order to avoid deadlocks and livelocks, and minimize the number of
messages during these transactions.

Another common problem in the resource co-allocation field is that a failure in a single resource
compromises the entire execution of an application that requires multiple resources at the same
time. One approach to minimize this problem is defining a fault tolerance strategy that notifies
applications of a problem with a resource. A software layer could then provide the application
with a new resource, or discard the failed resource if it is not essential.

One of the main problems when executing applications over different clusters is the inter-site
network overhead. Several parallel applications require process communication, which may
become a bottleneck due to the high latency of wide-area networks. Therefore, it is important to

1 Grid’5000 had approximately 6000 co-allocation requests in 2.5 years, i.e. an average of
200 requests per month. Based on data collected from the Grid Workloads Archive: http://
gwa.ewi.tudelft.nl/pmwiki

evaluate the benefits of multi-site execution and develop techniques for mapping application
processes considering communication costs.

Scheduling multi-site applications is more complex than scheduling single-site applications due
to the tasks’ time dependency. In addition, as some applications have more flexibility on how to
map tasks to resources, the scheduler has to analyze more mapping options. For parallel
applications with process communication, the scheduler also has to take into account the network
overhead. Moreover, the scheduling of a co-allocation request depends on the goals and policies
of each resource provider. Figure 1 illustrates a typical scenario with a user performing a co-
allocation based on advance reservations using three resource providers

Figure 1. Example of a user with three advance reservations within the scheduling queues of
multiple resource providers

When implementing and deploying a software system that supports resource co-allocation,
developers initially face the first three mentioned problems. Once a system is in production, the
schedule optimization becomes one of the most important issues. Most of the work has been on
schedule optimization, mainly evaluated by means of simulations. In the next section, we describe
in detail the solutions proposed for these four major problems in resource co-allocation. We also
give an overview of each project before detailing their solutions. Some projects, especially those
with middleware implementation, have faced more than one challenge. For these projects, we
have included a section with a comparison of their features and limitations.

CHALLENGES IN RESOURCE CO-ALLOCATION
We have classified the existing work on resource co-allocation for Grid Computing according to
the four major challenges. In Table 1, we have a short description and solutions for each research
topic. Some of the projects have focused on more than one aspect of resource co-allocation.
However, the description of such projects is in the section of the research topic with their most
significant contribution.

Table 1. Summary of issues and challenges and solutions for resource co-allocation.
Issues/Challenges Description Solutions
Distributed Transactions

Fault Tolerance

Network Overhead

Schedule Optimization

Prevention of deadlocks and
livelocks; Reduction of messages
during transactions.

Hardware and software failures;
Coordinated allocation.

E v a l u a t i o n o f i n t e r - s i t e
communication;
Response time reductions.

Increase system utilization;
Reduce user response time.

Two- and Three-phase Commit
Protocol;Order-based Deadlock
Prevention Protocol; Polling.

Advance reservations;
Backtracking;
User’s fault recovery strategy;
Flexible resource selection.

Topology-aware mapping; Use of
network l inks information;
Proximity of data location to
resources.

Advance reservations;
Network-aware scheduling;
Rescheduling and negotiation
support.

Distributed Transactions
The research on the management of Distributed Transactions involves the development of
protocols to avoid deadlocks and livelocks that may occur during the co-allocation process. In
addition, the protocols aim to minimize the number of messages during these transactions. A
deadlock may happen when the following two conditions are true: (i) multiple clients ask for
resources at the same time from the same resource providers and (ii) these resource providers
work with schedulers that lock themselves to serve requests. Similar to the two conditions of a
deadlock, a livelock happens when the schedulers in the resource providers have a timeout
associated with the locks. The distributed transactions research field has been quite active in
database communities (Bernstein & Goodman, 1981). However, in this section we will describe
projects interested in this area focusing on resource co-allocation for Grid Computing. Table 2
summarizes the methods and goals used by the researchers on this topic.

Kuo & Mckeown, 2005 presented a protocol specification, in terms of messages and finite state
machines, for advance reservations and co-allocation as a requirement of the RealityGrid project.
The RealityGrid users execute interactive simulations and may need to modify their simulation
parameters when the simulation entered un-interesting regions of the search space. They also
need to transfer data to the visualization system and need to know when their simulations start. In
addition they require the co-allocation and cancellation of reservations. Their co-allocation
protocol is an extension of the two-phase commit protocol with the support for cancellations that
may occur at any time. Their protocol supports nested configuration, i.e. a resource can be a co-

allocator for other set of resources. However, it has no support for atomic transactions. Therefore,
a transaction may reach a state where a reservation executes on some resources, while other
reservations are cancelled. They deal with race conditions on the request phase and propose a
non-blocking protocol with a timeout mechanism.

Table 2. Summary of methods and goals for distributed transactions in Grid
environments.
Method Goals
Two-phase Commit Protocol

Three-phase Commit Protocol

Order-based Deadline Prevention Protocol

Polling

Prevent gathering partial number of resources.

Prevent deadlocks and live locks; Support
messages to be lost and delayed.

Prevent deadlocks and livelocks.

Prevent deadlocks and livelocks; Remove
requirements of ordering resources; Support
asymmetric communication

Park, 2004 introduced a decentralized protocol for co-allocating large-scale distributed resources,
which is free from deadlocks and livelocks. The protocol does not require the applications to use
any information other than their own local resource allocation states. The proposed protocol
ensures that every application can co-allocate the resources specified by one of its goal states
through a series of requests, while preventing the application from getting involved in deadlocks
or livelocks during the allocation process. The protocol is based on the Order-based Deadlock
Prevention Protocol ODP2, but with parallel requests in order to increase its efficiency. The
protocol uses the IP address as the unique local identifier to order the resources. Another
approach to avoid deadlock and livelock is the exponential back-off mechanism, which does not
require the ordering of resources. Jardine, Snell, & Clement, 2001 investigated such a mechanism
for co-allocating resources.

Czajkowski, Foster, Kesselman, Sander, & Tuecke, 2002 proposed the Service
Negotiation and Acquisition Protocol (SNAP), which aims at managing access to
and use of distributed computing resources in a coordinated fashion by means
of Service Level Agreements (SLAs). SNAP coordinates the resource management
through three types of SLAs, which separate task requirements, resource
capabilities, and biding of tasks to resources. From the moment users identify
target resources to the moment when they submit tasks, other users may access
the chosen resources. This happens because information obtained from the
providers may be out-of-date during the selection and actual submission of
tasks. In order to solve this problem, Haji, Gourlay, Djemame, & Dew, 2005
developed a Three-Phase commit protocol for SNAP-based brokers. The key
feature of their protocol is the use of probes, which are signals sent from the
providers to the candidates interested in the same resources to be aware of resource status’
changes.

Takefusa, Nakada, Kudoh, Tanaka, & Sekiguchi, 2007 developed a resource co-allocation
framework, called GridARS (Grid Advance Reservation-based System), based on advance
reservation, which utilizes WSRF/GSI (Web Services Resource Framework/Grid Security
Infrastructure) and a Two-Phase Commit (2PC) Protocol. The motivation of their work is the
human interaction still required for co-allocating resources across different administrative
domains with different Grid technologies. Their 2PC protocol uses a polling approach from the
client to the server. The authors argue that although there is a communication overhead between
the client and server due to the polling, this non-blocking approach allows asymmetric
communication, and hence, the client does not need a global address. Moreover, it eliminates
firewall problems, avoids hang-ups because of server or client side troubles, and enables the
recovery of each process from the failure. They evaluated their framework on top of Globus by
co-allocating computing and network resources from 7 sites in Japan and 3 sites in US. For the
resources in US, they used a wrapper on top of the Highly-Available Robust Co-allocator
(Maclaren et al., 2006).

Maclaren et al., 2006 discussed the problem of resource co-allocation, in particular focusing on
fault tolerance, and presented a co-allocation system called HARC (Highly-Available Robust Co-
allocator). Their system uses advance reservation to co-allocate resources and relies on a Three-
Phase Commit Protocol based on Paxos consensus algorithm (Gray & Lamport, 2006). In this
algorithm, the coordinator responsible for receiving confirmation answers from resource
providers is replaced with a set of replicated processes called Acceptors. A leader process
coordinates the acceptor processes to agree on a value or condition. Any acceptor can act as the
leader and replace the leader if it fails. This algorithm allows messages to be lost, delayed or even
duplicated. Therefore, the Paxos Commit protocol is a valuable algorithm when considering the
fault tolerance for distributed transactions in order to co-allocate resources in Grids.

Table 3. Summary of methods used for fault tolerance in resource co-allocation.
Method Goals
Advance Reservations

Backtracking

User’s fault recovery strategy

Flexible resource selection

Ensure all resources are available at
required time.

Replace failed/unavailable resources.

Users specify their own recovery strategy.

Ignore optional resources;
Specify alternative resources.

Azougagh, Yu, Kim, & Maeng, 2005 introduced the Availability Check Technique (ACT) to
reduce the conflicts during the process of resource co-allocation. The conflicts are generated
when multiple jobs are trying to allocate two or more resources in a crossing way simultaneously,
resulting in deadlocks, starvations, and livelocks. They described an analogy of this co-allocation
problem with the dinning philosophers’ problem. In their solution, jobs wait for updates from
resource providers until they fulfill their requirements. They evaluated ACT on top of All-or-
Nothing protocol, in which all the allocated resources are released if one of them cannot be
allocated, and Order-based Deadlock Prevention protocol (ODP2), in which there is an

assumption of a global linear order of the resources. Once the resources are allocated, the job
starts running. Therefore, their work does not rely on advance reservations and consequently does
not provide guarantees for the start time of user applications.

Fault Tolerance
Hardware and software failures are common in Computational Grids due to their complexity in
terms of resource autonomy, heterogeneity, and scalability. Improper configuration, network
error, and authorization difficulties are examples of problems that affect the execution of an
application. For a multi-site application, failures are even more frequent since a failure in a single
resource may compromise the entire execution. In this section, we describe some of the projects
working on fault tolerance for multi-site applications. Table 3 summarizes the main methods used
for fault tolerance in resource co-allocation.

Czajkowski et al., 1998 introduced a Resource Specification Language (RSL) to allow users to
submit co-allocation requests to a broker. This broker contains an entity called resource co-
allocator responsible for producing and submitting multiple sub-requests to each determined
resource manager. In order to co-allocate resources, their system relied on the current availability
of the resources and queue-time estimations of the resource providers. Using this approach, an
RSL request could not provide guarantees that the resources would be available at the same time.
Czajkowski et al., 1998 concluded that such an approach was not scalable since many failures
were common, e.g. improper configuration, network error, and authorization difficulties.

Czajkowski, Foster, & Kesselman, 1999 proposed a layered architecture to address failures for
co-allocation requests. During the allocation phase, users should include a barrier function in their
application for starting purposes. They introduced two methods for co-allocation: Atomic
Transaction and Interactive Transaction. In the atomic transaction, all the required resources were
specified at the request time. The request succeeds if all resources are allocated. Otherwise, the
request fails and none of the resources is acquired. The user could modify the co-allocation
content until the request initializes. The authors argued that for large-scale applications this
approach was not appropriate since a resource failure usually cannot be detected until the
application starts. Therefore, they proposed the interactive transaction method, in which the
content of a co-allocation request could be modified via add, delete, and substitute operations. In
order to simplify the reconfiguration of a request, resources could be classified in three
categories: required (failure or timeout of this kind of resource causes the entire computation to
be terminated---similar to atomic operation); interactive (failure or timeout of a resource results in
a call-back to the application, which can delete or substitute to another resource---i.e. the resource
is not essential or it is easy to find replacements); optional (failure or timeout is ignored). The
authors performed experiments using both methods and concluded that interactive transaction is
more suitable for large-scale applications in Computational Grids.

Foster et al., 1999 proposed and described the prototype of the Globus Architecture for
Reservation and Allocation (GARA). This prototype aimed to provide a platform with support for
Quality of Service (QoS) guarantees. Based on the support of advance reservations, the authors
argued that the number of candidate resources could be larger. That is because the users could
consider more plans, i.e. they did not simply rely on the current resource availability. However,

having this possibility of creating more plans requires more efficient scheduling heuristics.
Regarding fault tolerance, GARA had the concept of backtracking, in which when there was a
resource failure, it was possible to try other resources until the request succeeded or failed.

Sinaga, Mohamed, & Epema, 2004 designed and implemented an extension for the DUROC
system to enhance two functionalities: resource-brokering and fault tolerance. In DUROC, users
had to specify where their job components had to be executed. The authors modified the system
to allow the scheduler to select the target sites of the job components. Moreover, in terms of fault
tolerance, once a job could not get the resources, DUROC considered it as failed. The authors
extended the scheduler such that it could keep trying to schedule jobs until they could get all the
required resources, or until the number of tries achieved a certain threshold.

Roblitz & Reinefeld, 2005 presented a framework to manage reservations for applications
running concurrently on multiple sites and applications with components that may be linked by
temporal or spatial relationships, such as job flows. They defined and described co-reservations
along with their life cycle, and presented an architecture for processing co-reservation requests
with support for fault tolerance. When handling confirmed co-reservations, part of the requested
resources may not be available, therefore alternative resources should substitute them. If it is not
possible, a best-effort option could be followed or the request should be canceled. Users define
such a behavior through a fault recovery strategy in the request specification. The authors also
discussed the concept of virtual resources to provide the user with a consistent view on multiple
reservations. Therefore, it is possible to have modifications of the reservations in a transparent
way for users.

Table 4. Summary of methods used for evaluating network overhead for multi-
site applications.
Method Goals
Application specific

Data-intensive applications

Simulation-based evaluation

Real-testbed-based evaluation

Topology-aware mapping

Evaluate specific application
properties.

Consider transfer of large amounts of
data.

Evaluate wide range of parameters
and scenarios.

Evaluate network in real conditions.

Consider network heterogeneity to map tasks.

Inter-site Network Overhead
One of the main problems when executing message passing parallel applications over different
clusters is the network overhead. Due to the inter-process communication, the wide-area networks
may degrade the performance of these parallel applications, thus generating a considerable delay.
Therefore, it is important to evaluate the benefits of multi-site executions and investigate

techniques for mapping application processes considering communication costs. Several
researchers have investigated the benefits of multi-site executions using different methods and
testbeds. Network overhead has also been investigated for co-allocation data and processors.
Table 4 summarizes the main methods for evaluating network overhead for multi-site
applications.

The Message Passing Interface (MPI) has been broadly used for developing parallel applications
in single site environments. However, executing these applications on multi-site environments
imposes different challenges due to network heterogeneity. Intra-site communication has much
lower latency than inter-site communication. There are several MPI implementations, such as
MPICH-VMI (Pant & Jafri, 2004), MPICH Madeleine (Aumage & Mercier, 2003), and MPICH-
G2 (Karonis, Toonen, & Foster, 2003), that take into account this network heterogeneity and
simplified the application development process.

Ernemann, Hamscher, Schwiegelshohn, Yahyapour, & Streit, 2002 studied the benefits of sharing
jobs among independent sites and executing parallel jobs in multiple sites. When co-allocating
resources, the scheduler looks for a site that has enough resources to start the job. If it is not
possible, the scheduler sorts the sites in a descending order of free resources and allocates those
resources in this order to minimize the number of combined sites. If it is not possible to fit the
job, the scheduler queues the job using Easy Backfilling (Mu’alem & Feitelson, 2001). Through
discrete event driven simulations, the authors varied the network overhead from 0 to 40% and
concluded that multi-site applications reduce average weighed response time when the
communication overhead is limited to about 25%.

Bucur & Epema, 2003a investigated the feasibility of executing parallel applications across wide-
area systems. Their evaluation, which is based on simulations, has as input parameters the
structure and size of jobs, scheduling policy, and communication speed ratio between intra- and
inter-clusters. They used mean job response time as the main metric as a function of system
utilization. The simulation setup is based on the Distributed ASCI Supercomputer (DAS) system
composed of five clusters. Either the user or the scheduler can decide the job components to be
submitted to each cluster. For the latter case, the scheduler maps the job components by their
decreasing order of size. Users can also specify only the total number of processors required by
their applications. The scheduler has three placement policies: Cluster-Filling, Load-Balancing on
Smallest number of clusters, and Load-Balancing on All clusters. In the first policy, the scheduler
submits the job components to the clusters that have the largest number of idle processors. The
other two policies balance the number of processors for each cluster. Based on their study, they
concluded that: (i) the user response time increases when users specify the size of each job
component and the target clusters; (ii) even when the ratio between inter- and intra-cluster is 50, it
is worth co-allocating resources instead of waiting for all resources to be available in a single
cluster; and (iii) when the scheduler can split jobs and choose their target clusters, it should
balance the load to accommodate jobs with less splitting flexibility.

Dong et al., 2005 showed a performance evaluation of two parallel applications in biological and
physical sciences on the TeraGrid environment: the simulation of blood flow in the entire human
arterial tree, and the direct numerical simulation of bluff-body turbulent wake flows. They used
256 processors of two sites located in US. They investigated the impact of the network

communication on the application’s speedups according to the number of processors in a single
and two sites. They concluded that multi-site execution is a viable alternative to reduce the
response time of large-scale scientific experiments.

Jones, III, & Shrivastava, 2006 proposed scheduling strategies that use available information of
the network link utilization and job communication topology to define job partition sizes and job
placement. Their motivation for using co-allocation is to reduce the user response time by
merging fragments from the scheduling queues of multiple resource providers. Rather than
assuming a fixed amount of time for all inter-cluster communication or assigning execution time
penalties for the network overhead, the authors considered that inter-cluster bandwidth changes
over time due to the number and duration of multi-site executions in the environment. Therefore,
they explored the scheduling of multiple co-allocation jobs sharing the same computing
infrastructure. Their scheduling policy for job selection is Fit-Processors-First-Served, which is
similar to Easy Backfilling (Mu’alem & Feitelson, 2001) but without the restriction of not
delaying the job in the head of the queue. As for the co-allocation strategies, the authors
investigated:

• First-Fit, which performs resource co-allocation by assigning tasks starting with the
cluster having the largest number of free nodes and does not use any information of
neither the job communication characterization nor network link saturation

• Link Saturation Level Threshold Only, which is similar to First-Fit but discards clusters
with saturated links;

• Link Saturation Level Threshold with Constraint Satisfaction, which tries to put jobs into
a large portion of a single cluster (e.g. 85% of resources); and Integer Constraint
Satisfaction, which uses jobs’ communication characterization and current link utilization
to prevent link saturations.

Through simulations, Jones et al., 2006 concluded that it is possible to reduce multi-site
applications’ response time by using information of network usage and jobs’ network
requirements. In addition, they concluded that this performance gain depends heavily on the
characteristics of the arriving workload stream.

Mohamed & Epema, 2005 addressed the problem of co-allocating processors and data. They
presented two features of their co-allocating scheduler, namely different priority levels of jobs
and incrementally claiming processors. The scheduler may not be able to find enough resources
when jobs are claiming for resources. In this case, if a job j claiming for resources has high
priority, the scheduler verifies whether the number of processors used by low priority jobs is
enough to serve the job j. If it is enough, the scheduler preempts the low priority jobs in a
descending order until enough resources are released. The scheduler moves the preempted jobs
into the low priority placement queue. The scheduler uses the Close-to-Files (CF) job-placement
algorithm to select target sites for job components (Mohamed & Epema, 2004). The CF algorithm
attempts to place the jobs in the sites where the estimated delay of transferring the input file to the
execution sites is minimal.

Schedule Optimization
Most of the work on resource co-allocation for Grid Computing focuses on how to optimize the
schedule of multi-site applications. Scheduling co-allocation requests is more complex than
scheduling single site requests due to the tasks’ time dependency. Moreover, some parallel
applications have the flexibility on how they can be decomposed to run in multiple sites. In case
of parallel applications with process communication, the scheduler has to take into account the
network overhead. Table 5 summarizes the main methods and environments for optimizing the
schedule of co-allocation requests.

Snell et al., 2000 investigated the importance of using advance reservations for scheduling Grid
jobs, rather than periodically blocking resources dedicated to Grid usage. They defined three
scheduling strategies for co-allocation requests: (i) Specified co-allocation, where users specify
the resources and their location; (ii) General co-allocation, in which users do not specify the
resource location; and (iii) Optimal scheduling, in which the scheduler tries to determine the best
location for every required resource in order to optimize cost, performance, response time or any
other metric specified by the user. They evaluated the impact of using advance reservations for
meta jobs against reserving periods for external usage. They concluded that the former approach
is a viable solution for co-allocating resources for Grid jobs.

Table 5. Summary of methods and scenarios for schedule optimization of co-allocation
requests.

Methods/Scenarios Goals

Advance reservation

Non-advance-reservation

Global queue

Autonomous queues

Network-aware scheduling

On-line scheduling

Batch-mode scheduling

Negotiation support

Rescheduling support

Ensure all resources are available at the same
time.

Support for middleware without advance
reservations; Reduce resource fragmentation
in scheduling queues.

Simplify evaluation. Focus on small scale
environments

Consider local load and scheduling policies for
multiple resource providers.

Consider inter-site network overhead

Make scheduling decisions based only already
accepted requests

Make decisions knowing all requests a priori

Achieve common goals of users and resource
providers

Reduce resource fragmentation and user
response time; Increase system utilization

Alhusaini, Raghavendra, & Prasanna, 2001; Alhusaini, Prasanna, & Raghavendra, 2000 proposed
a two-phase approach for scheduling tasks requiring resource co-allocation. The first phase is an
off-line planning where the scheduler assigns tasks to resources assuming that all the applications
hold all the required resources for their entire execution. The second phase is the run-time
adaptation where the scheduler maps tasks according to the actual computation and
communication costs, which may differ from the estimated costs used in the first phase. In
addition, applications may release a portion of the resources before they finish. The authors
considered the scheduling of a set of applications rather than a single one (batch mode). Their
optimization criterion was to minimize the completion time of the last application, i.e. the
makespan. They modeled the applications as Directed Acyclic Graphs (DAGs) and used graph
theory to optimize the mapping of tasks.

Ernemann, Hamscher, Streit, & Yahyapour, 2002 studied the effects of applying constraints for
job decomposition when scheduling multi-site jobs. These constraints limit the number of
processes for each site (lower bound) and number of sites per job. When selecting the number of
processors used in each site, they sort the sites list by the decreasing number of free nodes in
order to minimize the number of fragments for the jobs. The decision of using multi- or single-
site to execute the application is automatic and depends on the load of the clusters. In their study,
a lower bound of half of the total number of available resources appeared to be beneficial in most
cases. Their evaluation considers the network overhead for multi-site jobs. They summarized the
overheads caused by communication and data migration as an increase of the job’s run time.

Azzedin, Maheswaran, & Arnason, 2004 proposed a co-allocation mechanism that requires no
advance reservations. Their main argument for this approach is the strict timing constraints on the
client side due to the advance reservations, i.e. once a user requests an allocation, the initial and
final times are fixed. Consequently, advance reservations generate fragments that the schedulers
cannot utilize. Furthermore, the authors argued that a resource provider can reject a co-allocation
request at any time in favor of internal requests, and hence the co-allocation would fail. Their
schema, called synchronous queuing (SQ), synchronizes the subtasks at the scheduling cycles, or
more often, by speeding them up or slowing them down.

Li & Yahyapour, 2006 introduced a negotiation model that supports co-allocation. They extended
a bilateral model, which consists of a negotiation protocol, utility functions or preference
relationships for the negotiating parties, and a negotiation strategy. For the negotiation protocol,
the authors adopted and modified the Rubinstein’s sequential alternating offer protocol. In this
protocol, players bargain at certain times. For each period, one of the players proposes an
agreement and the other player either accepts or rejects. If the second player rejects, it presents an
agreement, and the first player agrees or rejects. This negotiation continues until an agreement
between the parties is established or the negotiation times out. As it may take several rounds to
find a common time slot between resource providers, the authors introduced the non-binding
state, in which neither negotiation parties need to commit to an agreement unless all the parties
agree to commit. They evaluated the model through simulations with different input parameters
for prices, negotiation behaviors, and optimization weights.

Sonmez, Mohamed, & Epema, 2006 presented two job placement policies that take into account
the wide-area communication overhead when co-allocating applications across multiple clusters.
The first policy is the Cluster Minimization in which users specify how to decompose the jobs
and the scheduler maps the maximum job components in each cluster according to their processor
availability (more processors available first). The second policy is Flexible Cluster Minimization
in which users specify only the number of required processors and the scheduler fills the
maximum number of processors in each cluster. The main goal of these two policies is to
minimize the number of clusters involved in a co-allocation request in order to reduce the wide-
area communication overhead. The authors implemented these policies in their system called
KOALA and evaluated several metrics, including average response time, wait time and execution
time of user applications. Their work does not use advance reservations, so at time intervals (4
seconds in their experiments), the scheduler looks for idle nodes in the waiting queues of co-
allocation requests. If the placement of a job fails, KOALA places the job at the tail of the waiting
queue. For each job in the queue, the system records its number of placement tries, and when this
number achieves a certain threshold, the job is considered as rejected.

Bucur & Epema, 2007, 2003b investigated scheduling policies on various queuing structures for
resource co-allocation in multi-cluster systems. They evaluated the differences of having single
global schedulers, only local schedulers and both schedulers together, as well as different
priorities for local and meta jobs. They used First Come First Serve in the scheduling queues.
They have concluded that multi-site applications should not spend more than 25% of their time
with wide-area communication and that there should be restrictions on how to decompose the
multi-site jobs in order to produce better schedules.

Elmroth & Tordsson, 2007 modeled the co-allocation problem as a bipartite graph-matching
problem. Tasks can be executed on specific resources and have different requirements. Their
model relies on advance reservations with flexible time intervals. They explored a relaxed notion
of simultaneous start time, where jobs can start with a short period of difference. When a
resource provider cannot grant an advance reservation, it suggests a new feasible reservation,
identical to the rejected one, but with a later start time. They presented an algorithm to schedule
all the jobs within the start window interval, which tries to minimize the jobs’ start time.

Decker & Schneider, 2007 investigated resource co-allocation as part of workflow tasks that must
be executed at the same time. They extended the HEFT (Heterogeneous Earliest-Finish-Time)
algorithm to find a mapping of tasks to resources in order to minimize the schedule length
(makespan), to support advance reservations and co-allocation, and to consider data channel
requirements between two activities. They observed that most of the workflows were rejected
because no co-allocation could be found that covered all activities of a synchronous dependency
or because there was not enough bandwidth available for the data channels. Therefore, they
incorporated a backtracking method, which uses not only the earliest feasible allocation slot for
each activity that is part of a co-allocation requirement, but all possible allocation ranges as well.

Netto & Buyya, 2008 proposed a resource co-allocation model that supports rescheduling. The
model allows the schedulers to change the start time of the job components and remap the number
of processors used in each site. The authors evaluated the impact of rescheduling co-allocation
requests due to the inaccurate runtime estimations provided by users. Their results show that local
jobs may not fill all the fragments in the scheduling queues and hence rescheduling co-allocation
requests reduces the response time of both local and multi-site jobs. Moreover, they observed
that, in some scenarios, the processor remapping operation increases the chances of placing the
tasks of multi-site jobs into a single cluster, thus eliminating the inter-cluster network overhead.

SYSTEMS WITH RESOURCE CO-ALLOCATION SUPPORT
In previous section, we described the existing solutions for each challenge on resource co-
allocation. Although several projects have focused on one aspect of resource co-allocation, some
research groups have faced more than one challenge, in particular groups that developed
middleware systems with resource co-allocation support. In this section, we present a brief
description of the existing systems that support resource co-allocation and compare them
according to their features and limitations based on the challenges we have presented (Table 6).

GARA: The Globus Architecture for Reservation and Allocation (GARA) enables
applications to co-allocate resources, which include networks, computers, and
storage (Foster et al., 1999). GARA uses advance reservations to support co-allocation with
Quality-of-Service (QoS). GARA was one of the first projects to consider QoS for co-allocation
requests.

OAR: OAR is the batch scheduler that has been used in Grid’5000 (Capit et al., 2005; Cappello
et al., 2005). OAR uses a simple policy based on all-or-none approach to co-allocate resources
using advance reservations. One of the main design goals of OAR is the use of high level tools to
keep low software complexity.

KOALA: is a grid scheduler that has been deployed on the DAS-2 and the DAS-3
multi-cluster systems in the Netherlands (Mohamed & Epema, 2005, 2008).
KOALA’s users can co-allocate both processors and files located in autonomous
clusters. KOALA supports malleable jobs, which can receive messages to expand
and reduce the number of processors at application runtime, and has fault
tolerance mechanisms, which are used to deal with reliability of the grid
resources.

HARC: Highly-Available Resource Co-allocator (HARC) is a system for reserving
multiple resources, which can be processors and lightpaths, in a coordinated
fashion (Maclaren et al., 2006). HARC has been deployed in several computing
infrastructures, such as TeraGrid, LONI (Louisiana Optical Network Initiative),
and UK National Grid Service. One of the main features of HARC is its Three-Phase
Commit Protocol based on Paxos consensus algorithm (Gray & Lamport, 2006), which increases
fault tolerance during the allocation process.

GridARS: Grid Advance Reservation-based System (GridARS) is a co-allocation framework
based advance reservation, which utilizesWSRF/GSI (Web Services Resource Framework/Grid
Security Infrastructure). GridARS can co-allocate both computing and network resources. One of
the main aspects of GridARS is its Two-Phase Commit (2PC) Protocol based on polling
(Takefusa et al., 2007). The framework was evaluated on top of Globus by co-allocating
computing and network resources from 7 sites in Japan and 3 sites in US. For the resources in US,
they used a wrapper on top of the Highly-Available Robust Co-allocator (Maclaren et al., 2006).

JSS: Job Submission Service (JSS) is a tool for resource brokering designed with
the focus on software component interoperability (Elmroth & Tordsson, 2009). This
tool has been used in NorduGrid and Swegrid. JSS relies on advance reservations
for resource co-allocation. These advance reservations are flexible, i.e. users
can provide a starting time interval for the allocation. JSS also considers time
prediction for file staging when ranking resources to schedule user applications.
JSS does not access the resource providers’ scheduling queues to decide where
to place the advance reservations. Thus the co-allocation is based on a set of
interactions between the metascheduler and resource providers until the co-allocation
can be accomplished.

Table 6. Summary of the main features and limitations of six middleware systems that support
resource co-allocation for each challenge.
System D i s t r i b u t e d

Transactions
Fault Tolerance N e t w o r k

Overhead
Schedule Optimization

GARA

KOALA

HARC

OAR

GridARS

JSS

Two-phase commit
protocol

None
(processors
claimed
incrementally)

Three-Phase
Commit
Protocol based
on Paxos
consensus
algorithm.

One-phase: All-or-
none approach.

Two-Phase
Commit Protocol
with polling.

Negotiation with
multiple
interactions
without blocking
resource.

Use of alternative/
optional resources
until application
receives resources.
Backtracking.

Flexible resource
selection until
application receives
resources.

Only on the
allocation transaction
phase.

Unavailable for co-
allocation requests.

On the allocation
transaction phase
with a rollback
mechanism.

Only on the moment
to find a feasible
schedule.

User pre-selects
sets of resources

Close-to-Files
policy

User pre-selects
sets of resources

User pre-selects
sets of resources

User pre-selects
sets of resources

Network-aware
scheduling based
on ranking.

Advance reservation based
scheduling.

Scheduling based on incremental
processor claiming. No use of
advance reservations.

Advance reservation based
scheduling. Metascheduler makes
decisions based on timetables
offered by providers.
Reservations can be modified to
support rescheduling.

Advance reservation based
scheduling using first fit.

Advance reservation based
scheduling

Advance reservation based
scheduling with multiple
interactions between
metascheduler and provider to
find a common job start time.

TRENDS

Resource co-allocation is one of the main requirements in a Grid environment to
enable cross-site executions. Due to the demand for Quality-of-service, several
researchers have been relying on advance reservations for resource co-
allocation. Therefore, we believe that most of the future work on resource co-
allocation will continue to follow this approach as well. In addition, we have seen
more researchers working on negotiation mechanisms for co-allocation
requests in order to better satisfy users’ demand and resource provider
requirements (Sim, 2007; Elmroth & Tordsson, 2009; Czajkowski et al., 2002; Li
& Yahyapour, 2006). Negotiation is an important mechanism to avoid providers
disclosing private information, such as load and resource capabilities, to the
metascheduler. The use of resource offers, rather than the resource providers’
scheduling queues, will also become more common, especially due to utility
computing paradigm (Netto & Buyya, 2009).

Another important trend is the development of rescheduling policies for co-
allocation requests. As users cannot predict the runtime of their applications,
the scheduler has to reschedule them frequently. Other reasons for rescheduling
applications are resource failures, dynamic resource demand, and optimization
of metrics such as system utilization, power consumption, and users’ response
time. Rescheduling has also impact on management of contracts, also called
Service Level Agreements, in utility computing environments. In these environments, users pay
to access resources or services, and providers have to guarantee the delivery of these services
with a pre-established Quality-of-Service level. For co-allocation users, several entities may
participate in these contracts and hence managing issues such as violation becomes a complex
task. Thus, for the next years, especially due to the increasing number of utility computing centers
around the world, researchers will be facing the challenge of developing and improving existing
policies for managing contracts involving multiple entities

Virtualization is another concept that will be highly explored to provide
transparency to users when co-allocating multiple resources that are hosted in
either a single or multiple administrative domains. Virtual clusters can be
dynamically formed to deploy applications with various application requirements
(Chase, Irwin, Grit, Moore, & Sprenkle, 2003). Moreover, with the consolidation
of Cloud Computing, resource/service provisioning centers can avoid contract
violations and increase system utilization by co-allocation resources from multiple parties on
demand.

CONCLUSION
Co-allocation is the process of allocating resources from multiple administrative
domains in a coordinated manner. We have shown in this chapter the main
research efforts in the area of resource co-allocation. These efforts involve four
research directions: distributed transactions, fault tolerance, evaluation of inter-
site network overhead, and schedule optimization. We have presented existing
work for each of these research directions. We have also described and
compared six systems that support resource co-allocation.

From our survey on resource co-allocation, we observed that most of the work
do not take into account the distributed transactions because they perform
experiments by means of simulation. However, when implementing real systems
to deploy in production environments, the support for managing distributed

transactions properly becomes an important issue. In terms of fault tolerance,
co-allocation systems have been supporting the notion of optional and
alternative resources that allows the scheduler to remap the application to other
resources in case of failures. As for wide-area network overhead, we noticed
that most of the works that consider it have used 25% of the execution time as
the threshold to perform experiments. In addition, researchers have been
considering location of data and computing resources to schedule multi-site
applications. This is particularly necessary when scheduling data-intensive
applications.

Most of the work on resource co-allocation focus on scheduling strategies for
multi-site jobs. Scheduling strategies have been developed mainly with the use
of advance reservations. When scheduling jobs with co-allocation requirements,
there are several factors to take into account. Apart from the network overhead
and fault tolerance aspects, the scheduling relies on the amount of information
available for finding a placement for jobs. The use of a global queue or
autonomous queues has a considerable influence on the scheduling strategies.
Fortunately, several researchers have been considering the use of autonomous
queues to perform their experiments, which is a fundamental characteristic of a
Grid Computing environment.

Although there are several researchers working on scheduling policies for co-
allocation requests, we have observed that most groups that developed
middleware systems with co-allocation support use simple scheduling
techniques. That is because there are still several technical details before more
advanced scheduling policies can be deployed. Some of these technical problems
are interoperability between metaschedulers and resource providers’ middleware, inter-site
network overhead, and the autonomous policies of each resource provider.

ACKNOWLEDGMENTS
We would like to thank Chee Shin Yeo and the anonymous reviewers for their comments on the
chapter. This work is partially supported by research grants from the Australian Research Council
(ARC) and Australian Department of Innovation, Industry, Science and Research (DIISR).

REFERENCES
Alhusaini, A. H., Prasanna, V. K., & Raghavendra, C. S. (2000). A framework for mapping with
resource co-allocation in heterogeneous computing systems. In C. Raghavendra (Ed.),
Heterogeneous Computing Workshop (pp. 273-286). Los Alamitos, California: IEEE Computer
Society.

Alhusaini, A. H., Raghavendra, C. S., & Prasanna, V. K. (2001). Run-time adaptation for grid
environments. In B. Werner (Ed.), International Parallel and Distributed Processing Symposium
(pp. 864-874). Los Alamitos, California: IEEE Computer Society.

Aumage, O., & Mercier, G. (2003). MPICH/MADIII: a cluster of clusters enabled MPI
implementation. In F. Titsworth & D. Azada (Eds.), International Symposium on Cluster
Computing and the Grid (p. 26-). Los Alamitos, California: IEEE Computer Society.

Azougagh, D., Yu, J.-L., Kim, J.-S., & Maeng, S. R. (2005). Resource co-allocation: A
complementary technique that enhances performance in grid computing environment. In L.
Barolli (Ed.), International Conference on Parallel and Distributed Systems (Vol. 1, pp. 36-42).
Los Alamitos, California: IEEE Computer Society.

Azzedin, F., Maheswaran, M., & Arnason, N. (2004). A synchronous co-allocation mechanism for
grid computing systems. Cluster Computing, 7 (1), 39-49.

Bernstein, P. A., & Goodman, N. (1981). Concurrency control in distributed database systems.
ACM Computing Surveys, 13 (2), 185-221.

Bucur, A. I. D., & Epema, D. H. J. (2003a). The performance of processor co-allocation in
multicluster systems. In F. Titsworth & D. Azada (Eds.), International Symposium on Cluster
Computing and the Grid (pp. 302-309). Los Alamitos, California: IEEE Computer Society.

Bucur, A. I. D., & Epema, D. H. J. (2003b). Priorities among multiple queues for processor co-
allocation in multicluster system. In R. Bilof (Ed.), Annual Simulation Symposium (pp. 15-27).
Los Alamitos, California: IEEE Computer Society.

Bucur, A. I. D., & Epema, D. H. J. (2007). Scheduling policies for processor coallocation in
multicluster systems. IEEE Transactions on Parallel and Distributed Systems, 18 (7), 958-972.

Capit, N., Costa, G. D., Georgiou, Y., Huard, G., Martin, C., Mounie, G., et al. (2005). A batch
scheduler with high level components. In International Symposium on Cluster Computing and the
Grid (pp. 776-783). Los Alamitos, California: IEEE Computer Society.

Cappello, F., Caron, E., Dayd´e, M. J., Desprez, F., J´egou, Y., Primet, P. V.-B., et
al. (2005). Grid’5000: a large scale and highly reconfigurable grid experimental
testbed. In International conference on grid computing (p. 99-106). Los
Alamitos, California: IEEE.

Chase, J. S., Irwin, D. E., Grit, L. E., Moore, J. D., & Sprenkle, S. (2003). Dynamic
virtual clusters in a grid site manager. In International Symposium on High-
Performance Distributed Computing (p. 90-103). Los Alamitos, California: IEEE
Computer Society.

Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., et al. (1998). A
resource management architecture for metacomputing systems. In D. G. Feitelson & L. Rudolph
(Eds.), International Workshop on Job Scheduling Strategies for Parallel Processing (Vol. 1459,
pp. 62-82). Berlin: Springer.

Czajkowski, K., Foster, I., & Kesselman, C. (1999). Resource co-allocation in computational
grids. In International Symposium on High Performance Distributed Computing (pp. 219-228).
Los Alamitos, California: IEEE Computer Society.

Czajkowski, K., Foster, I. T., Kesselman, C., Sander, V., & Tuecke, S. (2002). SNAP: A protocol
for negotiating service level agreements and coordinating resource management in distributed
systems. In D. G. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), 8th international
workshop job scheduling strategies for parallel processing (Vol. 2537, p. 153-183).
Berlin: Springer.

Decker, J., & Schneider, J. (2007). Heuristic scheduling of grid workflows supporting co-
allocation and advance reservation. In B. Schulze, R. Buyya, P. Navaux, W. Cirne, & V. Rebello
(Eds.), International Symposium on Cluster Computing and the Grid (pp. 335-342). Los
Alamitos, California: IEEE Computer Society.

Dong, S., Karniadakis, G. E., & Karonis, N. T. (2005). Cross-site computations on the TeraGrid.
Computing in Science and Engineering, 7 (5), 14-23.

Elmroth, E., & Tordsson, J. (2007). A standards-based grid resource brokering service supporting
advance reservations, coallocation and cross-grid interoperability. Manuscript submitted for
publication.

Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., & Streit, A. (2002). On
advantages of grid computing for parallel job scheduling. In International Symposium on Cluster
Computing and the Grid (p. 39-). Los Alamitos, California: IEEE Computer Society.

Ernemann, C., Hamscher, V., Streit, A., & Yahyapour, R. (2002). Enhanced algorithms for multi-
site scheduling. In M. Parashar (Ed.), International Workshop on Grid Computing (Vol. 2536, pp.
219-231). Berlin: Springer.

Ferrari, D., Gupta, A., & Ventre, G. (1997). Distributed advance reservation of real-time
connections. Multimedia Systems, 5 (3), 187-198.

Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., & Roy, A. (1999). A distributed
resource management architecture that supports advance reservations and co-allocation. In
International Workshop on Quality of Service (pp. 27-36). Piscataway, New Jersey: IEEE
Computer Society.

Gray, J., & Lamport, L. (2006). Consensus on transaction commit. ACM Transactions on
Database Systems, 31 (1), 133-160.

Haji, M. H., Gourlay, I., Djemame, K., & Dew, P. M. (2005). A SNAP-based community resource
broker using a three-phase commit protocol: A performance study. The Computer Journal, 48
(3), 333-346.

Jardine, J., Snell, Q., & Clement, M. J. (2001). Livelock avoidance for meta-schedulers. In A. D.
Williams (Ed.), International Symposium on High Performance Distributed Computing (pp.
141-146). Los Alamitos, California: IEEE Computer Society.

Jones, W. M., III, W. B. L., & Shrivastava, N. (2006). The impact of information availability and
workload characteristics on the performance of job co-allocation in multi-clusters. In
International Conference on Parallel and Distributed Systems (pp. 123-134). Los Alamitos,
California: IEEE Computer Society.

Karonis, N. T., Toonen, B. R., & Foster, I. T. (2003). MPICH-G2: A Grid-enabled implementation
of the Message Passing Interface. Journal of Parallel and Distributed Computing, 63 (5),
551-563.

Kuo, D., & Mckeown, M. (2005). Advance reservation and co-allocation protocol for grid
computing. In H. Stockinger, R. Buyya, & R. Perrott (Eds.), International Conference on e-
Science and Grid Technologies (pp. 164-171). Los Alamitos, California: IEEE Computer Society.

Li, J., & Yahyapour, R. (2006). Negotiation model supporting co-allocation for grid scheduling.
In D. Gannon, R. M. Badia, & R. Buyya (Eds.), International Conference on Grid Computing
(pp. 254-261). Los Alamitos, California: IEEE Computer Society.

Maclaren, J., Keown, M. M., & Pickles, S. (2006). Co-allocation, fault tolerance and grid
computing. In S. J. Cox (Ed.), UK e-Science All Hands Meeting (pp. 155-162). NeSC Press.

Mohamed, H. H., & Epema, D. H. J. (2004). An evaluation of the close-to-files processor and
data co-allocation policy in multiclusters. In International Conference on Cluster Computing (pp.
287-298). Los Alamitos, California: IEEE Computer Society.

Mohamed, H. H., & Epema, D. H. J. (2005). Experiences with the koala co-allocating scheduler
in multiclusters. In International Symposium on Cluster Computing and the Grid (pp. 784-791).
Los Alamitos, California: IEEE Computer Society.

Mohamed, H. H., & Epema, D. H. J. (2008). KOALA: a co-allocating grid scheduler.
Concurrency and Computation: Practice and Experience, 20 (16), 1851-1876.

Mu’alem, A. W., & Feitelson, D. G. (2001). Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on Parallel
and Distributed Systems, 12 (6), 529-543.

Netto, M. A. S., & Buyya, R. (2008). Rescheduling co-allocation requests based on flexible
advance reservations and processor remapping. In International Conference on Grid Computing
(p. 144-151). Los Alamitos, California: IEEE Computer Society.

Netto, M. A. S., & Buyya, R. (2009). Offer-based scheduling of deadline-constrained bag-of-tasks
applications for utility computing systems. In International Heterogeneity in Computing
Workshop, in conjunction with the 23rd IEEE International Parallel and
Distributed Processing Symposium. Los Alamitos, California: IEEE Computer Society.

Pant, A., & Jafri, H. (2004). Communicating efficiently on cluster based grids with MPICH-VMI.
In International Conference on Cluster Computing (pp. 23-33). Los Alamitos, California: IEEE
Computer Society.

Park, J. (2004). A deadlock and livelock free protocol for decentralized internet resource
coallocation. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 34 (1), 123-131.

Roblitz, T., & Reinefeld, A. (2005). Co-reservation with the concept of virtual resources. In
International Symposium on Cluster Computing and the Grid (pp. 398-406). Los Alamitos,
California: IEEE Computer Society.

Sim, K. M. (2007). Relaxed-criteria G-negotiation for grid resource co-allocation. ACM
SIGecom Exchanges, 6 (2), 37-46.

Sinaga, J. M. P., Mohamed, H. H., & Epema, D. H. J. (2004). A dynamic co-allocation service in
multicluster systems. In D. G. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), International
Workshop Job Scheduling Strategies for Parallel Processing (Vol. 3277, p. 194-209). New York,
USA: Springer.

Snell, Q., Clement, M. J., Jackson, D. B., & Gregory, C. (2000). The performance impact of
advance reservation meta-scheduling. In D. G. Feitelson & L. Rudolph (Eds.), International

Workshop on Job Scheduling Strategies for Parallel Processing (Vol. 1911, pp. 137-153). Berlin:
Springer.

Sonmez, O., Mohamed, H., & Epema, D. (2006). Communication-aware job placement policies
for the koala grid scheduler. In International Conference on e-Science and Grid Computing (p.
79). Los Alamitos, California: IEEE Computer Science.

Takefusa, A., Hayashi, M., Nagatsu, N., Nakada, H., Kudoh, T., Miyamoto, T., et al. (2006). G-
lambda: Coordination of a grid scheduler and lambda path service over GMPLS. Future
Generation Computing Systems, 22 (8), 868-875.

Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y., & Sekiguchi, S. (2007). GridARS: an advance
reservation-based grid co-allocation framework for distributed computing and network resources.
In E. Frachtenberg & U. Schwiegelshohn (Eds.), International Workshop on Job Scheduling
Strategies for Parallel Processing. Berlin: Springer.

Takemiya, H., Tanaka, Y., Sekiguchi, S., Ogata, S., Kalia, R. K., Nakano, A., et al. (2006).
Sustainable adaptive grid supercomputing: multiscale simulation of semiconductor processing
across the pacific. In Conference on High Performance Networking and Computing (p. 106). New
York, USA: ACM Press.

Vazhkudai, S. (2003). Enabling the co-allocation of grid data transfers. In B. Werner (Ed.),
International Workshop on Grid Computing (pp. 44-51). Los Alamitos, California: IEEE
Computer Society.

Xu, D., Nahrstedt, K., & Wichadakul, D. (2001). QoS and contention-aware multi-resource
reservation. Cluster Computing, 4 (2), 95-107.

Yang, C.-T., Yang, I.-H.,Wang, S.-Y., Hsu, C.-H., & Li, K.-C. (2007). A recursively-adjusting co-
allocation scheme with cyber-transformer in data grids. Future Generation Computer Systems.
doi:10.1016/j.future.2006.11.005, published online on 21 January 2007.

Yoshimoto, K., Kovatch, P. A., & Andrews, P. (2005). Co-scheduling with user-settable
reservations. In D. G. Feitelson, E. Frachtenberg, L. Rudolph, & U. Schwiegelshohn (Eds.),
International Workshop on Job Scheduling Strategies for Parallel Processing (Vol. 3834, pp.
146-156). Berlin: Springer.

Yu, J & Buyya, R (2005), A Taxonomy of Workflow Management Systems for Grid Computing,
Journal of Grid Computing, Volume 3, Numbers 3-4, Pages: 171-200, Springer Science+Business
Media B.V., New York, USA, Sept. 2005.

KEY TERMS & DEFINITIONS

Resource Co-allocation: the process of allocating resources from multiple providers. It is usually
referred to simultaneous access of multiple resources.

Parallel Application: An application comprising multiple processes that can be executed in
multiple processing units.

http://dx.doi.org/10.1016/j.future.2006.11.005
http://dx.doi.org/10.1016/j.future.2006.11.005

Scheduling: the process of defining where and when a task is executed.

Advance Reservation: the process of booking resources in advance for future utilization.

Multi-Site Applications: applications that are executed on multiple sites, which can be from the
same or different administrative domains.

Inter-Process Communication: Message exchange among processes of an application.

Resource Fragmentation: an idle portion of resources in a scheduling queue that cannot be used
depending on the scheduler’s policies.

Livelock: situation where multiple processes keep trying to access multiple resources but none of
them is able to.

