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ABSTRACT

One of the promises of Grid Computing is to enable the execution of applications across multiple 
sites. Several multi-site applications require simultaneous access to resources hosted on 
autonomous domains; this problem is known as resource co-allocation.  Projects working on 
resource co-allocation face four major problems: distributed transactions, fault  tolerance, inter-
site network overhead, and schedule optimization. Although resource co-allocation is 
fundamental for Grid Computing, no survey has covered the current projects, solutions, and open 
challenges on this topic. Therefore, in this chapter, we describe the challenges on resource co-
allocation, present the projects developed over the last  decade, and classify them according to 
their similar characteristics. In addition, we discuss open research issues and trends such as 
negotiation, advance reservations, and rescheduling of multi-site applications.

INTRODUCTION
One of the promises of Grid Computing is to enable the execution of applications across multiple 
sites. Some of these applications require coordinated access to resources managed by autonomous 
entities. This coordinated access is known as resource co-allocation. There are two main classes 
of applications that  require resource co-allocation: parallel applications with inter-process 
communication, and workflow applications. Parallel applications with inter-process 
communication require all resources to be available at  the same time, whereas workflows 
constitute the execution of tasks with precedence constraints, i.e. resources have to be available in 
a certain order. Although both application classes require co-allocation, in the Grid computing 
community, the term co-allocation usually refers to the simultaneous access to 
resources hosted by autonomous providers (Czajkowski, Foster, & Kesselman, 1999). 
The coordinated access to resources by tasks with precedence constraints is referred as 
workflow scheduling (Yu & Buyya, 2005). In this work, we follow the Grid computing 
community definition.

The two main reasons for executing applications on multiple sites are: (i) the 
lack of special resources in a single administrative domain, such as devices for 
generating data, visualization tools, and supercomputers; and (ii) reduce 
response time of parallel applications by increasing the number of resources 
(Czajkowski et al., 1998). However, there are other applications that require co-allocation. 
Conference and multimedia users engaged in activities, such as scientific research, education, 
commerce, and entertainment, require co-allocation of multiparty real-time communication 
channels (Ferrari, Gupta, & Ventre, 1997; Xu, Nahrstedt, & Wichadakul, 2001). Data-intensive 
applications use co-allocation to collect data from multiple sources in parallel (Vazhkudai, 2003; 
Yang, Yang, Wang, Hsu, & Li, 2007). In addition, increasing the number of resources is a 
requirement of large-scale applications demanding considerable amounts of memory, storage, and 



processing power. Examples of these applications are semiconductor processing (Takemiya et al., 
2006) and computational fluid dynamics (Dong, Karniadakis, & Karonis, 2005).

Various projects have developed software systems with resource co-allocation support  for large-
scale computing environments, such as TeraGrid, Distributed ASCI Supercomputer (DAS), and 
Grid’5000. TeraGrid has deployed Generic Universal Remote (GUR) (Yoshimoto, Kovatch, & 
Andrews, 2005) and Highly-Available Resource Co-allocator (HARC) (Maclaren, Keown, & 
Pickles, 2006), the DAS project  has developed KOALA (Mohamed & Epema, 2005), and 
Grid’50001 has relied on the OAR(Grid) scheduler (Capit  et al., 2005) to allow the execution of 
applications requiring co-allocation. There are also projects dedicated to the management  of 
network links, such as G-lambda (Takefusa et al., 2006).

Although resource co-allocation is fundamental for Grid Computing, no survey has covered the 
four major challenges in this field: distributed transactions, fault tolerance, inter-site network 
overhead, and schedule optimization. Therefore, in this chapter, we describe the challenges on 
resource co-allocation, present some of the efforts and projects developed over the last  decade, 
and classify them according to their similar characteristics. In addition, we discuss open research 
issues and trends such as negotiation, advance reservations, and rescheduling of multi-site 
applications.

BACKGROUND
Existing work on resource co-allocation have focused on four research problems: distributed 
transactions, fault  tolerance, inter-site network overhead, and schedule optimization. Most  of the 
projects we present  in this chapter have considered at least  two of these problems.  Resource co-
allocation involves the interaction of multiple entities, namely clients and resource providers. 
Multiple clients may ask for resources at the same time from the same providers. This situation 
may generate deadlocks if the resource providers use a locking procedure; or livelock if there is a 
timeout  associated with the locks. Therefore, there has been research on protocols to handle 
distributed transactions in order to avoid deadlocks and livelocks, and minimize the number of 
messages during these transactions.

Another common problem in the resource co-allocation field is that  a failure in a single resource 
compromises the entire execution of an application that requires multiple resources at the same 
time. One approach to minimize this problem is defining a fault  tolerance strategy that notifies 
applications of a problem with a resource. A software layer could then provide the application 
with a new resource, or discard the failed resource if it is not essential.

One of the main problems when executing applications over different  clusters is the inter-site 
network overhead. Several parallel applications require process communication, which may 
become a bottleneck due to the high latency of wide-area networks. Therefore, it  is important to 

1 Grid’5000 had approximately 6000 co-allocation requests in 2.5 years, i.e. an average of 
200 requests per month. Based on data collected from the Grid Workloads Archive: http://
gwa.ewi.tudelft.nl/pmwiki



evaluate the benefits of multi-site execution and develop techniques for mapping application 
processes considering communication costs.

Scheduling multi-site applications is more complex than scheduling single-site applications due 
to the tasks’ time dependency. In addition, as some applications have more flexibility on how to 
map tasks to resources, the scheduler has to analyze more mapping options. For parallel 
applications with process communication, the scheduler also has to take into account the network 
overhead. Moreover, the scheduling of a co-allocation request depends on the goals and policies 
of each resource provider. Figure 1 illustrates a typical scenario with a user performing a co-
allocation based on advance reservations using three resource providers

Figure 1. Example of a user with three advance reservations within the scheduling queues of 
multiple resource providers

When implementing and deploying a software system that supports resource co-allocation, 
developers initially face the first  three mentioned problems. Once a system is in production, the 
schedule optimization becomes one of the most  important issues. Most  of the work has been on 
schedule optimization, mainly evaluated by means of simulations. In the next section, we describe 
in detail the solutions proposed for these four major problems in resource co-allocation. We also 
give an overview of each project  before detailing their solutions. Some projects, especially those 
with middleware implementation, have faced more than one challenge. For these projects, we 
have included a section with a comparison of their features and limitations.

CHALLENGES IN RESOURCE CO-ALLOCATION
We have classified the existing work on resource co-allocation for Grid Computing according to 
the four major challenges. In Table 1, we have a short description and solutions for each research 
topic. Some of the projects have focused on more than one aspect of resource co-allocation. 
However, the description of such projects is in the section of the research topic with their most 
significant contribution.



Table 1. Summary of issues and challenges and solutions for resource co-allocation.
Issues/Challenges Description Solutions
Distributed Transactions

Fault Tolerance

Network Overhead

Schedule Optimization

Prevention of deadlocks and 
livelocks; Reduction of messages 
during transactions.

Hardware and software failures; 
Coordinated allocation.

E v a l u a t i o n o f i n t e r - s i t e 
communication;
Response time reductions.

Increase system utilization; 
Reduce user response time.

Two- and Three-phase Commit 
Protocol;Order-based Deadlock 
Prevention Protocol; Polling.

Advance reservations;
Backtracking;
User’s fault recovery strategy; 
Flexible resource selection.

Topology-aware mapping; Use of 
network l inks information; 
Proximity of data location to 
resources.

Advance reservations;
Network-aware scheduling;
Rescheduling and negotiation 
support.

Distributed Transactions
The research on the management  of Distributed Transactions involves the development  of 
protocols to avoid deadlocks and livelocks that  may occur during the co-allocation process. In 
addition, the protocols aim to minimize the number of messages during these transactions.  A 
deadlock may happen when the following two conditions are true: (i) multiple clients ask for 
resources at  the same time from the same resource providers and (ii) these resource providers 
work with schedulers that  lock themselves to serve requests. Similar to the two conditions of a 
deadlock, a livelock happens when the schedulers in the resource providers have a timeout 
associated with the locks. The distributed transactions research field has been quite active in 
database communities (Bernstein & Goodman, 1981). However, in this section we will describe 
projects interested in this area focusing on resource co-allocation for Grid Computing. Table 2 
summarizes the methods and goals used by the researchers on this topic.  

Kuo & Mckeown, 2005 presented a protocol specification, in terms of messages and finite state 
machines, for advance reservations and co-allocation as a requirement  of the RealityGrid project. 
The RealityGrid users execute interactive simulations and may need to modify their simulation 
parameters when the simulation entered un-interesting regions of the search space. They also 
need to transfer data to the visualization system and need to know when their simulations start.  In 
addition they require the co-allocation and cancellation of reservations. Their co-allocation 
protocol is an extension of the two-phase commit protocol with the support  for cancellations that 
may occur at any time. Their protocol supports nested configuration, i.e. a resource can be a co-



allocator for other set  of resources. However, it  has no support for atomic transactions. Therefore, 
a transaction may reach a state where a reservation executes on some resources, while other 
reservations are cancelled. They deal with race conditions on the request phase and propose a 
non-blocking protocol with a timeout mechanism.

Table 2. Summary of methods and goals for distributed transactions in Grid 
environments.
Method Goals
Two-phase Commit Protocol

Three-phase Commit Protocol

Order-based Deadline Prevention Protocol

Polling

Prevent gathering partial number of resources.

Prevent  deadlocks and live locks; Support 
messages to be lost and delayed.

Prevent deadlocks and livelocks.

Prevent  deadlocks and livelocks; Remove 
requirements of ordering resources; Support 
asymmetric communication

Park, 2004 introduced a decentralized protocol for co-allocating large-scale distributed resources, 
which is free from deadlocks and livelocks. The protocol does not  require the applications to use 
any information other than their own local resource allocation states.  The proposed protocol 
ensures that  every application can co-allocate the resources specified by one of its goal states 
through a series of requests, while preventing the application from getting involved in deadlocks 
or livelocks during the allocation process. The protocol is based on the Order-based Deadlock 
Prevention Protocol ODP2, but with parallel requests in order to increase its efficiency. The 
protocol uses the IP address as the unique local identifier to order the resources. Another 
approach to avoid deadlock and livelock is the exponential back-off mechanism, which does not 
require the ordering of resources. Jardine, Snell, & Clement, 2001 investigated such a mechanism 
for co-allocating resources.

Czajkowski, Foster, Kesselman, Sander, & Tuecke, 2002 proposed the Service 
Negotiation and Acquisition Protocol (SNAP), which aims at managing access to 
and use of distributed computing resources in a coordinated fashion by means 
of Service Level Agreements (SLAs). SNAP coordinates the resource management 
through three types of SLAs, which separate task requirements, resource 
capabilities, and biding of tasks to resources. From the moment users identify 
target resources to the moment when they submit tasks, other users may access 
the chosen resources. This happens because information obtained from the 
providers may be out-of-date during the selection and actual submission of 
tasks. In order to solve this problem, Haji, Gourlay, Djemame, & Dew, 2005 
developed a Three-Phase commit protocol for SNAP-based brokers. The key 
feature of their protocol is the use of probes, which are signals sent  from the 
providers to the candidates interested in the same resources to be aware of resource status’ 
changes.



Takefusa, Nakada, Kudoh, Tanaka, & Sekiguchi, 2007 developed a resource co-allocation 
framework, called GridARS (Grid Advance Reservation-based System), based on advance 
reservation, which utilizes WSRF/GSI (Web Services Resource Framework/Grid Security 
Infrastructure) and a Two-Phase Commit (2PC) Protocol. The motivation of their work is the 
human interaction still required for co-allocating resources across different administrative 
domains with different Grid technologies. Their 2PC protocol uses a polling approach from the 
client to the server. The authors argue that  although there is a communication overhead between 
the client  and server due to the polling, this non-blocking approach allows asymmetric 
communication, and hence, the client does not  need a global address. Moreover, it eliminates 
firewall problems, avoids hang-ups because of server or client  side troubles, and enables the 
recovery of each process from the failure. They evaluated their framework on top of Globus by 
co-allocating computing and network resources from 7 sites in Japan and 3 sites in US. For the 
resources in US, they used a wrapper on top of the Highly-Available Robust Co-allocator 
(Maclaren et al., 2006).

Maclaren et al., 2006 discussed the problem of resource co-allocation, in particular focusing on 
fault tolerance, and presented a co-allocation system called HARC (Highly-Available Robust Co-
allocator). Their system uses advance reservation to co-allocate resources and relies on a Three-
Phase Commit Protocol based on Paxos consensus algorithm (Gray & Lamport, 2006). In this 
algorithm, the coordinator responsible for receiving confirmation answers from resource 
providers is replaced with a set  of replicated processes called Acceptors.  A leader process 
coordinates the acceptor processes to agree on a value or condition. Any acceptor can act as the 
leader and replace the leader if it  fails. This algorithm allows messages to be lost, delayed or even 
duplicated. Therefore, the Paxos Commit protocol is a valuable algorithm when considering the 
fault tolerance for distributed transactions in order to co-allocate resources in Grids.

Table 3. Summary of methods used for fault tolerance in resource co-allocation.
Method Goals
Advance Reservations

Backtracking

User’s fault recovery strategy

Flexible resource selection

Ensure all resources are available at 
required time.

Replace failed/unavailable resources.

Users specify their own recovery strategy.

Ignore optional resources;
Specify alternative resources.

Azougagh, Yu, Kim, & Maeng, 2005 introduced the Availability Check Technique (ACT) to 
reduce the conflicts during the process of resource co-allocation. The conflicts are generated 
when multiple jobs are trying to allocate two or more resources in a crossing way simultaneously, 
resulting in deadlocks, starvations, and livelocks. They described an analogy of this co-allocation 
problem with the dinning philosophers’ problem. In their solution, jobs wait  for updates from 
resource providers until they fulfill their requirements. They evaluated ACT on top of All-or-
Nothing protocol, in which all the allocated resources are released if one of them cannot  be 
allocated, and Order-based Deadlock Prevention protocol (ODP2), in which there is an 



assumption of a global linear order of the resources. Once the resources are allocated, the job 
starts running. Therefore, their work does not rely on advance reservations and consequently does 
not provide guarantees for the start time of user applications.

Fault Tolerance
Hardware and software failures are common in Computational Grids due to their complexity in 
terms of resource autonomy, heterogeneity, and scalability. Improper configuration, network 
error, and authorization difficulties are examples of problems that affect the execution of an 
application. For a multi-site application, failures are even more frequent since a failure in a single 
resource may compromise the entire execution. In this section, we describe some of the projects 
working on fault  tolerance for multi-site applications. Table 3 summarizes the main methods used 
for fault tolerance in resource co-allocation.

Czajkowski et  al., 1998 introduced a Resource Specification Language (RSL) to allow users to 
submit  co-allocation requests to a broker. This broker contains an entity called resource co-
allocator responsible for producing and submitting multiple sub-requests to each determined 
resource manager. In order to co-allocate resources, their system relied on the current availability 
of the resources and queue-time estimations of the resource providers.  Using this approach, an 
RSL request  could not provide guarantees that  the resources would be available at the same time. 
Czajkowski et  al., 1998 concluded that  such an approach was not scalable since many failures 
were common, e.g. improper configuration, network error, and authorization difficulties.

Czajkowski, Foster, & Kesselman, 1999 proposed a layered architecture to address failures for 
co-allocation requests. During the allocation phase, users should include a barrier function in their 
application for starting purposes. They introduced two methods for co-allocation: Atomic 
Transaction and Interactive Transaction. In the atomic transaction, all the required resources were 
specified at the request time. The request succeeds if all resources are allocated. Otherwise, the 
request  fails and none of the resources is acquired. The user could modify the co-allocation 
content until the request  initializes. The authors argued that for large-scale applications this 
approach was not appropriate since a resource failure usually cannot be detected until the 
application starts. Therefore, they proposed the interactive transaction method, in which the 
content of a co-allocation request could be modified via add, delete, and substitute operations. In 
order to simplify the reconfiguration of a request, resources could be classified in three 
categories: required (failure or timeout  of this kind of resource causes the entire computation to 
be terminated---similar to atomic operation); interactive (failure or timeout of a resource results in 
a call-back to the application, which can delete or substitute to another resource---i.e. the resource 
is not essential or it  is easy to find replacements); optional (failure or timeout  is ignored). The 
authors performed experiments using both methods and concluded that interactive transaction is 
more suitable for large-scale applications in Computational Grids.

Foster et  al., 1999 proposed and described the prototype of the Globus Architecture for 
Reservation and Allocation (GARA). This prototype aimed to provide a platform with support for 
Quality of Service (QoS) guarantees. Based on the support of advance reservations, the authors 
argued that the number of candidate resources could be larger. That is because the users could 
consider more plans, i.e. they did not simply rely on the current resource availability. However, 



having this possibility of creating more plans requires more efficient scheduling heuristics. 
Regarding fault  tolerance, GARA had the concept of backtracking, in which when there was a 
resource failure, it was possible to try other resources until the request succeeded or failed.

Sinaga, Mohamed, & Epema, 2004 designed and implemented an extension for the DUROC 
system to enhance two functionalities: resource-brokering and fault  tolerance. In DUROC, users 
had to specify where their job components had to be executed. The authors modified the system 
to allow the scheduler to select the target  sites of the job components. Moreover, in terms of fault 
tolerance, once a job could not  get the resources, DUROC considered it as failed. The authors 
extended the scheduler such that it could keep trying to schedule jobs until they could get all the 
required resources, or until the number of tries achieved a certain threshold.

Roblitz & Reinefeld, 2005 presented a framework to manage reservations for applications 
running concurrently on multiple sites and applications with components that may be linked by 
temporal or spatial relationships, such as job flows. They defined and described co-reservations 
along with their life cycle, and presented an architecture for processing co-reservation requests 
with support for fault  tolerance. When handling confirmed co-reservations, part  of the requested 
resources may not be available, therefore alternative resources should substitute them. If it  is not 
possible, a best-effort  option could be followed or the request  should be canceled. Users define 
such a behavior through a fault  recovery strategy in the request  specification. The authors also 
discussed the concept  of virtual resources to provide the user with a consistent  view on multiple 
reservations. Therefore, it  is possible to have modifications of the reservations in a transparent 
way for users.

Table 4. Summary of methods used for evaluating network overhead for multi-
site applications.
Method Goals
Application specific

Data-intensive applications

Simulation-based evaluation

Real-testbed-based evaluation

Topology-aware mapping

Evaluate specific application 
properties.

Consider transfer of large amounts of 
data.

Evaluate wide range of parameters 
and scenarios.

Evaluate network in real conditions.

Consider network heterogeneity to map tasks.

Inter-site Network Overhead
One of the main problems when executing message passing parallel applications over different 
clusters is the network overhead. Due to the inter-process communication, the wide-area networks 
may degrade the performance of these parallel applications, thus generating a considerable delay. 
Therefore, it is important  to evaluate the benefits of multi-site executions and investigate 



techniques for mapping application processes considering communication costs. Several 
researchers have investigated the benefits of multi-site executions using different methods and 
testbeds. Network overhead has also been investigated for co-allocation data and processors. 
Table 4 summarizes the main methods for evaluating network overhead for multi-site 
applications.

The Message Passing Interface (MPI) has been broadly used for developing parallel applications 
in single site environments. However, executing these applications on multi-site environments 
imposes different  challenges due to network heterogeneity. Intra-site communication has much 
lower latency than inter-site communication. There are several MPI implementations, such as 
MPICH-VMI (Pant & Jafri, 2004), MPICH Madeleine (Aumage & Mercier, 2003), and MPICH-
G2 (Karonis, Toonen, & Foster, 2003), that  take into account this network heterogeneity and 
simplified the application development process.

Ernemann, Hamscher, Schwiegelshohn, Yahyapour, & Streit, 2002 studied the benefits of sharing 
jobs among independent sites and executing parallel jobs in multiple sites. When co-allocating 
resources, the scheduler looks for a site that has enough resources to start  the job. If it  is not 
possible, the scheduler sorts the sites in a descending order of free resources and allocates those 
resources in this order to minimize the number of combined sites. If it  is not possible to fit  the 
job, the scheduler queues the job using Easy Backfilling (Mu’alem & Feitelson, 2001). Through 
discrete event driven simulations, the authors varied the network overhead from 0 to 40% and 
concluded that  multi-site applications reduce average weighed response time when the 
communication overhead is limited to about 25%.
         
Bucur & Epema, 2003a investigated the feasibility of executing parallel applications across wide-
area systems. Their evaluation, which is based on simulations, has as input parameters the 
structure and size of jobs, scheduling policy, and communication speed ratio between intra- and 
inter-clusters. They used mean job response time as the main metric as a function of system 
utilization. The simulation setup is based on the Distributed ASCI Supercomputer (DAS) system 
composed of five clusters. Either the user or the scheduler can decide the job components to be 
submitted to each cluster. For the latter case, the scheduler maps the job components by their 
decreasing order of size. Users can also specify only the total number of processors required by 
their applications. The scheduler has three placement policies: Cluster-Filling, Load-Balancing on 
Smallest  number of clusters, and Load-Balancing on All clusters. In the first  policy, the scheduler 
submits the job components to the clusters that have the largest  number of idle processors. The 
other two policies balance the number of processors for each cluster. Based on their study, they 
concluded that: (i) the user response time increases when users specify the size of each job 
component  and the target clusters; (ii) even when the ratio between inter- and intra-cluster is 50, it 
is worth co-allocating resources instead of waiting for all resources to be available in a single 
cluster; and (iii) when the scheduler can split  jobs and choose their target  clusters, it  should 
balance the load to accommodate jobs with less splitting flexibility.

Dong et al., 2005 showed a performance evaluation of two parallel applications in biological and 
physical sciences on the TeraGrid environment: the simulation of blood flow in the entire human 
arterial tree, and the direct numerical simulation of bluff-body turbulent wake flows.  They used 
256 processors of two sites located in US. They investigated the impact of the network 



communication on the application’s speedups according to the number of processors in a single 
and two sites. They concluded that multi-site execution is a viable alternative to reduce the 
response time of large-scale scientific experiments.

Jones, III, & Shrivastava, 2006 proposed scheduling strategies that use available information of 
the network link utilization and job communication topology to define job partition sizes and job 
placement. Their motivation for using co-allocation is to reduce the user response time by 
merging fragments from the scheduling queues of multiple resource providers. Rather than 
assuming a fixed amount of time for all inter-cluster communication or assigning execution time 
penalties for the network overhead, the authors considered that inter-cluster bandwidth changes 
over time due to the number and duration of multi-site executions in the environment.  Therefore, 
they explored the scheduling of multiple co-allocation jobs sharing the same computing 
infrastructure. Their scheduling policy for job selection is Fit-Processors-First-Served, which is 
similar to Easy Backfilling (Mu’alem & Feitelson, 2001) but without  the restriction of not 
delaying the job in the head of the queue. As for the co-allocation strategies, the authors 
investigated: 

• First-Fit, which performs resource co-allocation by assigning tasks starting with the 
cluster having the largest number of free nodes and does not use any information of 
neither the job communication characterization nor network link saturation

• Link Saturation Level Threshold Only, which is similar to First-Fit but discards clusters 
with saturated links;

• Link Saturation Level Threshold with Constraint Satisfaction, which tries to put jobs into 
a large portion of a single cluster (e.g. 85% of resources); and Integer Constraint 
Satisfaction, which uses jobs’ communication characterization and current link utilization 
to prevent link saturations.

Through simulations, Jones et  al., 2006 concluded that  it is possible to reduce multi-site 
applications’ response time by using information of network usage and jobs’ network 
requirements.  In addition, they concluded that this performance gain depends heavily on the 
characteristics of the arriving workload stream.

Mohamed & Epema, 2005 addressed the problem of co-allocating processors and data.  They 
presented two features of their co-allocating scheduler, namely different  priority levels of jobs 
and incrementally claiming processors. The scheduler may not be able to find enough resources 
when jobs are claiming for resources. In this case, if a job j claiming for resources has high 
priority, the scheduler verifies whether the number of processors used by low priority jobs is 
enough to serve the job j. If it  is enough, the scheduler preempts the low priority jobs in a 
descending order until enough resources are released. The scheduler moves the preempted jobs 
into the low priority placement  queue. The scheduler uses the Close-to-Files (CF) job-placement 
algorithm to select target  sites for job components (Mohamed & Epema, 2004). The CF algorithm 
attempts to place the jobs in the sites where the estimated delay of transferring the input file to the 
execution sites is minimal.



Schedule Optimization
Most  of the work on resource co-allocation for Grid Computing focuses on how to optimize the 
schedule of multi-site applications. Scheduling co-allocation requests is more complex than 
scheduling single site requests due to the tasks’ time dependency. Moreover, some parallel 
applications have the flexibility on how they can be decomposed to run in multiple sites.  In case 
of parallel applications with process communication, the scheduler has to take into account  the 
network overhead. Table 5 summarizes the main methods and environments for optimizing the 
schedule of co-allocation requests.

Snell et al., 2000 investigated the importance of using advance reservations for scheduling Grid 
jobs, rather than periodically blocking resources dedicated to Grid usage. They defined three 
scheduling strategies for co-allocation requests: (i) Specified co-allocation, where users specify 
the resources and their location; (ii) General co-allocation, in which users do not specify the 
resource location; and (iii) Optimal scheduling, in which the scheduler tries to determine the best 
location for every required resource in order to optimize cost, performance, response time or any 
other metric specified by the user. They evaluated the impact  of using advance reservations for 
meta jobs against  reserving periods for external usage. They concluded that the former approach 
is a viable solution for co-allocating resources for Grid jobs.

Table 5. Summary of methods and scenarios for schedule optimization of co-allocation
requests.

Methods/Scenarios Goals



Advance reservation 

Non-advance-reservation 

Global queue

Autonomous queues 

Network-aware scheduling 

On-line scheduling 

Batch-mode scheduling 

Negotiation support

Rescheduling support

Ensure all resources are available at the same 
time.

Support for middleware without advance 
reservations; Reduce resource fragmentation 
in scheduling queues.

Simplify evaluation. Focus on small scale 
environments

Consider local load and scheduling policies for 
multiple resource providers.

Consider inter-site network overhead

Make scheduling decisions based only already 
accepted requests

Make decisions knowing all requests a priori

Achieve common goals of users and resource 
providers

Reduce resource fragmentation and user 
response time; Increase system utilization

Alhusaini, Raghavendra, & Prasanna, 2001; Alhusaini, Prasanna, & Raghavendra, 2000 proposed 
a two-phase approach for scheduling tasks requiring resource co-allocation. The first phase is an 
off-line planning where the scheduler assigns tasks to resources assuming that all the applications 
hold all the required resources for their entire execution. The second phase is the run-time 
adaptation where the scheduler maps tasks according to the actual computation and 
communication costs, which may differ from the estimated costs used in the first  phase. In 
addition, applications may release a portion of the resources before they finish. The authors 
considered the scheduling of a set of applications rather than a single one (batch mode). Their 
optimization criterion was to minimize the completion time of the last  application, i.e. the 
makespan. They modeled the applications as Directed Acyclic Graphs (DAGs) and used graph 
theory to optimize the mapping of tasks.  

Ernemann, Hamscher, Streit, & Yahyapour, 2002 studied the effects of applying constraints for 
job decomposition when scheduling multi-site jobs. These constraints limit the number of 
processes for each site (lower bound) and number of sites per job. When selecting the number of 
processors used in each site, they sort  the sites list  by the decreasing number of free nodes in 
order to minimize the number of fragments for the jobs. The decision of using multi- or single-
site to execute the application is automatic and depends on the load of the clusters.  In their study, 
a lower bound of half of the total number of available resources appeared to be beneficial in most 
cases. Their evaluation considers the network overhead for multi-site jobs. They summarized the 
overheads caused by communication and data migration as an increase of the job’s run time.  



Azzedin, Maheswaran, & Arnason, 2004 proposed a co-allocation mechanism that  requires no 
advance reservations. Their main argument for this approach is the strict  timing constraints on the 
client side due to the advance reservations, i.e. once a user requests an allocation, the initial and 
final times are fixed. Consequently, advance reservations generate fragments that  the schedulers 
cannot utilize. Furthermore, the authors argued that a resource provider can reject a co-allocation 
request  at  any time in favor of internal requests, and hence the co-allocation would fail. Their 
schema, called synchronous queuing (SQ), synchronizes the subtasks at  the scheduling cycles, or 
more often, by speeding them up or slowing them down.  

Li & Yahyapour, 2006 introduced a negotiation model that supports co-allocation. They extended 
a bilateral model, which consists of a negotiation protocol, utility functions or preference 
relationships for the negotiating parties, and a negotiation strategy. For the negotiation protocol, 
the authors adopted and modified the Rubinstein’s sequential alternating offer protocol. In this 
protocol, players bargain at certain times. For each period, one of the players proposes an 
agreement  and the other player either accepts or rejects. If the second player rejects, it  presents an 
agreement, and the first  player agrees or rejects. This negotiation continues until an agreement 
between the parties is established or the negotiation times out.  As it  may take several rounds to 
find a common time slot  between resource providers, the authors introduced the non-binding 
state, in which neither negotiation parties need to commit to an agreement unless all the parties 
agree to commit. They evaluated the model through simulations with different  input parameters 
for prices, negotiation behaviors, and optimization weights.  

Sonmez, Mohamed, & Epema, 2006 presented two job placement  policies that take into account 
the wide-area communication overhead when co-allocating applications across multiple clusters. 
The first  policy is the Cluster Minimization in which users specify how to decompose the jobs 
and the scheduler maps the maximum job components in each cluster according to their processor 
availability (more processors available first). The second policy is Flexible Cluster Minimization 
in which users specify only the number of required processors and the scheduler fills the 
maximum number of processors in each cluster. The main goal of these two policies is to 
minimize the number of clusters involved in a co-allocation request in order to reduce the wide-
area communication overhead. The authors implemented these policies in their system called 
KOALA and evaluated several metrics, including average response time, wait  time and execution 
time of user applications. Their work does not use advance reservations, so at  time intervals (4 
seconds in their experiments), the scheduler looks for idle nodes in the waiting queues of co-
allocation requests. If the placement of a job fails, KOALA places the job at  the tail of the waiting 
queue. For each job in the queue, the system records its number of placement  tries, and when this 
number achieves a certain threshold, the job is considered as rejected.

Bucur & Epema, 2007, 2003b investigated scheduling policies on various queuing structures for 
resource co-allocation in multi-cluster systems. They evaluated the differences of having single 
global schedulers, only local schedulers and both schedulers together, as well as different 
priorities for local and meta jobs. They used First Come First Serve in the scheduling queues. 
They have concluded that multi-site applications should not  spend more than 25% of their time 
with wide-area communication and that there should be restrictions on how to decompose the 
multi-site jobs in order to produce better schedules.  



Elmroth & Tordsson, 2007 modeled the co-allocation problem as a bipartite graph-matching 
problem. Tasks can be executed on specific resources and have different requirements. Their 
model relies on advance reservations with flexible time intervals. They explored a relaxed notion 
of simultaneous start time, where jobs can start  with a short period of difference.  When a 
resource provider cannot grant an advance reservation, it  suggests a new feasible reservation, 
identical to the rejected one, but with a later start  time. They presented an algorithm to schedule 
all the jobs within the start window interval, which tries to minimize the jobs’ start time.  

Decker & Schneider, 2007 investigated resource co-allocation as part  of workflow tasks that  must 
be executed at the same time. They extended the HEFT (Heterogeneous Earliest-Finish-Time) 
algorithm to find a mapping of tasks to resources in order to minimize the schedule length 
(makespan), to support  advance reservations and co-allocation, and to consider data channel 
requirements between two activities. They observed that most of the workflows were rejected 
because no co-allocation could be found that  covered all activities of a synchronous dependency 
or because there was not enough bandwidth available for the data channels. Therefore, they 
incorporated a backtracking method, which uses not only the earliest  feasible allocation slot for 
each activity that is part of a co-allocation requirement, but all possible allocation ranges as well.  

Netto & Buyya, 2008 proposed a resource co-allocation model that supports rescheduling.  The 
model allows the schedulers to change the start time of the job components and remap the number 
of processors used in each site. The authors evaluated the impact of rescheduling co-allocation 
requests due to the inaccurate runtime estimations provided by users. Their results show that  local 
jobs may not  fill all the fragments in the scheduling queues and hence rescheduling co-allocation 
requests reduces the response time of both local and multi-site jobs.  Moreover, they observed 
that, in some scenarios, the processor remapping operation increases the chances of placing the 
tasks of multi-site jobs into a single cluster, thus eliminating the inter-cluster network overhead.

SYSTEMS WITH RESOURCE CO-ALLOCATION SUPPORT
In previous section, we described the existing solutions for each challenge on resource co-
allocation. Although several projects have focused on one aspect  of resource co-allocation, some 
research groups have faced more than one challenge, in particular groups that developed 
middleware systems with resource co-allocation support. In this section, we present a brief 
description of the existing systems that  support resource co-allocation and compare them 
according to their features and limitations based on the challenges we have presented (Table 6).

GARA: The Globus Architecture for Reservation and Allocation (GARA) enables 
applications to co-allocate resources, which include networks, computers, and 
storage (Foster et  al., 1999). GARA uses advance reservations to support co-allocation with 
Quality-of-Service (QoS). GARA was one of the first projects to consider QoS for co-allocation 
requests.
 
OAR: OAR is the batch scheduler that  has been used in Grid’5000 (Capit  et  al., 2005; Cappello 
et  al., 2005). OAR uses a simple policy based on all-or-none approach to co-allocate resources 
using advance reservations. One of the main design goals of OAR is the use of high level tools to 
keep low software complexity.



KOALA: is a grid scheduler that has been deployed on the DAS-2 and the DAS-3 
multi-cluster systems in the Netherlands (Mohamed & Epema, 2005, 2008). 
KOALA’s users can co-allocate both processors and files located in autonomous 
clusters. KOALA supports malleable jobs, which can receive messages to expand 
and reduce the number of processors at application runtime, and has fault 
tolerance mechanisms, which are used to deal with reliability of the grid 
resources.

HARC: Highly-Available Resource Co-allocator (HARC) is a system for reserving 
multiple resources, which can be processors and lightpaths, in a coordinated 
fashion (Maclaren et al., 2006). HARC has been deployed in several computing 
infrastructures, such as TeraGrid, LONI (Louisiana Optical Network Initiative), 
and UK National Grid Service. One of the main features of HARC is its Three-Phase 
Commit Protocol based on Paxos consensus algorithm (Gray & Lamport, 2006), which increases 
fault tolerance during the allocation process.

GridARS: Grid Advance Reservation-based System (GridARS) is a co-allocation framework 
based advance reservation, which utilizesWSRF/GSI (Web Services Resource Framework/Grid 
Security Infrastructure). GridARS can co-allocate both computing and network resources. One of 
the main aspects of GridARS is its Two-Phase Commit (2PC) Protocol based on polling 
(Takefusa et al., 2007). The framework was evaluated on top of Globus by co-allocating 
computing and network resources from 7 sites in Japan and 3 sites in US. For the resources in US, 
they used a wrapper on top of the Highly-Available Robust Co-allocator (Maclaren et al., 2006).

JSS: Job Submission Service (JSS) is a tool for resource brokering designed with 
the focus on software component interoperability (Elmroth & Tordsson, 2009). This 
tool has been used in NorduGrid and Swegrid. JSS relies on advance reservations 
for resource co-allocation. These advance reservations are flexible, i.e. users 
can provide a starting time interval for the allocation. JSS also considers time 
prediction for file staging when ranking resources to schedule user applications. 
JSS does not access the resource providers’ scheduling queues to decide where 
to place the advance reservations. Thus the co-allocation is based on a set of 
interactions between the metascheduler and resource providers until the co-allocation 
can be accomplished.

Table 6. Summary of the main features and limitations of six middleware systems that support 
resource co-allocation for each challenge.
System D i s t r i b u t e d 

Transactions
Fault Tolerance N e t w o r k 

Overhead
Schedule Optimization



GARA

KOALA

HARC

OAR

GridARS

JSS

Two-phase commit 
protocol

None
(processors 
claimed 
incrementally)

Three-Phase 
Commit 
Protocol based 
on Paxos 
consensus 
algorithm.

One-phase: All-or-
none approach.

Two-Phase 
Commit Protocol 
with polling.

Negotiation with 
multiple 
interactions 
without blocking 
resource.

Use of alternative/
optional resources 
until application 
receives resources. 
Backtracking.

Flexible resource 
selection until 
application receives 
resources.

Only on the 
allocation transaction 
phase.

Unavailable for co-
allocation requests.

On the allocation 
transaction phase 
with a rollback 
mechanism.

Only on the moment 
to  find a feasible 
schedule.

User pre-selects 
sets of resources

Close-to-Files 
policy

User pre-selects 
sets of resources

User pre-selects 
sets of  resources

User pre-selects 
sets of resources

Network-aware 
scheduling based 
on ranking.

Advance reservation based 
scheduling.

Scheduling based on incremental 
processor claiming. No use of 
advance reservations.

Advance reservation based 
scheduling. Metascheduler makes 
decisions based on timetables 
offered by providers. 
Reservations can be modified to 
support rescheduling.

Advance reservation based 
scheduling using first fit.

Advance reservation based 
scheduling

Advance reservation based 
scheduling with multiple 
interactions between 
metascheduler and provider to 
find a common job start time.

TRENDS



Resource co-allocation is one of the main requirements in a Grid environment to 
enable cross-site executions. Due to the demand for Quality-of-service, several 
researchers have been relying on advance reservations for resource co-
allocation. Therefore, we believe that most of the future work on resource co-
allocation will continue to follow this approach as well. In addition, we have seen 
more researchers working on negotiation mechanisms for co-allocation 
requests in order to better satisfy users’ demand and resource provider 
requirements (Sim, 2007; Elmroth & Tordsson, 2009; Czajkowski et al., 2002; Li 
& Yahyapour, 2006). Negotiation is an important mechanism to avoid providers 
disclosing private information, such as load and resource capabilities, to the 
metascheduler. The use of resource offers, rather than the resource providers’ 
scheduling queues, will also become more common, especially due to utility 
computing paradigm (Netto & Buyya, 2009).

Another important trend is the development of rescheduling policies for co-
allocation requests. As users cannot predict the runtime of their applications, 
the scheduler has to reschedule them frequently. Other reasons for rescheduling 
applications are resource failures, dynamic resource demand, and optimization 
of metrics such as system utilization, power consumption, and users’ response 
time. Rescheduling has also impact on management of contracts, also called 
Service Level Agreements, in utility computing environments. In these environments, users pay 
to access resources or services, and providers have to guarantee the delivery of these services 
with a pre-established Quality-of-Service level. For co-allocation users, several entities may 
participate in these contracts and hence managing issues such as violation becomes a complex 
task. Thus, for the next years, especially due to the increasing number of utility computing centers 
around the world, researchers will be facing the challenge of developing and improving existing 
policies for managing contracts involving multiple entities

Virtualization is another concept that will be highly explored to provide 
transparency to users when co-allocating multiple resources that are hosted in 
either a single or multiple administrative domains. Virtual clusters can be 
dynamically formed to deploy applications with various application requirements 
(Chase, Irwin, Grit, Moore, & Sprenkle, 2003). Moreover, with the consolidation 
of Cloud Computing, resource/service provisioning centers can avoid contract 
violations and increase system utilization by co-allocation resources from multiple parties on 
demand.

CONCLUSION
Co-allocation is the process of allocating resources from multiple administrative 
domains in a coordinated manner. We have shown in this chapter the main 
research efforts in the area of resource co-allocation. These efforts involve four 
research directions: distributed transactions, fault tolerance, evaluation of inter-
site network overhead, and schedule optimization. We have presented existing 
work for each of these research directions. We have also described and 
compared six systems that support resource co-allocation.

From our survey on resource co-allocation, we observed that most of the work 
do not take into account the distributed transactions because they perform 
experiments by means of simulation. However, when implementing real systems 
to deploy in production environments, the support for managing distributed 



transactions properly becomes an important issue. In terms of fault tolerance, 
co-allocation systems have been supporting the notion of optional and 
alternative resources that allows the scheduler to remap the application to other 
resources in case of failures. As for wide-area network overhead, we noticed 
that most of the works that consider it have used 25% of the execution time as 
the threshold to perform experiments. In addition, researchers have been 
considering location of data and computing resources to schedule multi-site 
applications. This is particularly necessary when scheduling data-intensive 
applications.

Most of the work on resource co-allocation focus on scheduling strategies for 
multi-site jobs. Scheduling strategies have been developed mainly with the use 
of advance reservations. When scheduling jobs with co-allocation requirements, 
there are several factors to take into account. Apart from the network overhead 
and fault tolerance aspects, the scheduling relies on the amount of information 
available for finding a placement for jobs. The use of a global queue or 
autonomous queues has a considerable influence on the scheduling strategies. 
Fortunately, several researchers have been considering the use of autonomous 
queues to perform their experiments, which is a fundamental characteristic of a 
Grid Computing environment.

Although there are several researchers working on scheduling policies for co-
allocation requests, we have observed that most groups that developed 
middleware systems with co-allocation support use simple scheduling 
techniques. That is because there are still several technical details before more 
advanced scheduling policies can be deployed. Some of these technical problems 
are interoperability between metaschedulers and resource providers’ middleware, inter-site 
network overhead, and the autonomous policies of each resource provider.
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KEY TERMS & DEFINITIONS

Resource Co-allocation: the process of allocating resources from multiple providers. It is usually 
referred to simultaneous access of multiple resources.

Parallel Application: An application comprising multiple processes that can be executed in 
multiple processing units.
 

http://dx.doi.org/10.1016/j.future.2006.11.005
http://dx.doi.org/10.1016/j.future.2006.11.005


Scheduling: the process of defining where and when a task is executed.

Advance Reservation: the process of booking resources in advance for future utilization.

Multi-Site Applications: applications that  are executed on multiple sites, which can be from the 
same or different administrative domains.
 
Inter-Process Communication: Message exchange among processes of an application.

Resource Fragmentation: an idle portion of resources in a scheduling queue that cannot be used 
depending on the scheduler’s policies. 

Livelock: situation where multiple processes keep trying to access multiple resources but none of 
them is able to.


